4

Instruction Set Processing

128

Thus far we have been dealing with the blocks from which computers are buiilt.
Chapter 2 described some of the decisions involved with choosing a method for
representing the information within the computer. Chapter 3 is adiscussionaof the
issues involved in doing some of the arithmetic operationsrequired of a machine.
In both cases, tradeoffs must be made to assure that the system resources are util-
ized in an efficacious manner. Representation rangesof number systems must be
effectively weighed against the cost of those representations, and the targeted
applicationsof the machine. Similarly, the methods used for doing the arithmetic
mugt be balanced in such a way that the speed and complexity match the intended
uses of the system.

In this chapter, we will look at how the arithmetic building blocks can be
combined with other functional units, such as registersand memories, to create
computing systems. Here we seek to address some of the basic questions con-
ceming data manipulation methods. What are some o the issues involved in
choosing an ingtruction set? What basic operationsshould be included? How do
we specify the operationsto be performed, and identify the operandsto be used in
that operation? What are the steps required to accomplish the specified work?
What are the costs associated with the specificationand execution of these instruc-
tions?

Let usfirst look at some of the basic tools used to describe machine struc-
ture and data manipulation methods. The tools are very smple: diagramsto iden-
tify structure and a register transfer language to specify data movement within that
structure. Then we will identify some of the methods utilized by different
machines to accomplish their work. Often what is considered *good" depends on
severa factors, and good design practices using one set of constraintswill not be
considered good design practices using a different set of constraints. Like the
other ideasexplored in the previous chapters, engineering choicesare made after a
careful examination of the alternative methodsof doing the work. The key is to

4.1.

choose appropriate metrics or measurement methods and to apply the metrics uni-
formly to the various aternatives.

The firgt area of interest concerns the data manipulation instructions and
related topics single address machines, two address machines, operand
specification methods, and so on. Then we will look a program flow instructions:
jumps, branches, subroutine calls, and the like. In a related area we will look at
the machinereactions when exception conditionsoccur: interruptsand traps. This
will necessitate some discussion of /0 programming methods as well. Finally,
we will identify some o the issues in the ongoing RISC/CISC dehate, and explore
reasons that the two methods are alternately considered good and bad.

Basic Building Blocks for Instruction Specification

As the computers space expands, the distinction between the responsibilities of
the individual pans becomes more and more blurred. So, we will begin by look-
ing at somed the concepts utilized in the early machines, and then as the opera
tions and methods become more complex, we can recognize the parentage of the
ideas, and see possible applicationsand design methods.

The building blocks used by the earliest machines comprised a very small
set: registers, ALUs, memory. and data paths. In this discussion we will assume
that the ALU modd is as shown at the beginning of Chapter 3. two different
inputs and an output. The ALU is assumed to be as wide as the machine; the
word width is adecision based on what needs to be represented. We will assume
that the ALU is capable of al of the arithmetic and logic operations which are
required by the instructions.

Figure 4.1 shows the basic building blocks we will use in consideration of
machine operation. The ALU we have aready mentioned; it is used for data
manipulation. Missing from the diagram are some very necessary lines, and in
that sense the representation is incomplete. The missing lines include the control
lines, which specify the action of the ALU (add, subtract, AND, etc.). and the data
lines that do not form part of the designated inputs and output. These additional
data lines often connect directly to a status register and include such things as the
carry (in and out), the sign hit, overflow bit, and the like. Thus, for operations
needing this additional interaction, we will assume that the connectionsdo indeed
exist and that the bits are transferred appropriately.

n n n
n " Address Memory

Data,},n
Data Bus
o

Figure41 Badc Building Blocksfor Indruction
Set Processing: ALU, Register. Memoary, and
Communication Paths.

Chap. 4: Instruction Set Processing 129

The data to be manipulated by an ALU is first stored in @ memory, and such
an element is shown in the figure. For our purposes we will say that the memory
is as wide as the data path, but we will see later how this may e atered as part
of the machine design. Our model for the memory element is smply that there
are M memory locations, and these are arranged in such a way that they can be
accessed by an address supplied on [log, (M) address lines. The data path
alows reading and writing of data in these locations. As with the ALU, some
lines are missing from the memory block as shown in Figure4.1. Theselines are
the control lines used to cause the actual write or read of data from the memory
devices. Theselinesare system-specific, and we will assume that the designer is
awareof the required lines and handles them in an appropriatefashion.

Much of our current practiceof memory system design and utilizationis the
result of the ideas explored by Von Neumann and his colleaguesin the late 1940s
{BuGo46]. Some of the earliest memory systems were organized such that the
instructions could be held in one memory, and the data in another, and that these
two memories were digoint in function and fabrication. However, Von Neumann
observed that the memories organized in that manner were not always effectively
used; some tasks would leave the data memory practically empty while crowding
the program memory, or vice versa. So he reasoned that since both instructions
and data were basicdly information, both could be stored in the same memory
space. Organizing the memory system in this manner brought a number of
benefits, since programs could be treated as data. Instructionscould be selectively
altered to alow different functions or addresses as required, or data values could
act as instructionsif the conditions permitted. By organizing the memory in this
fashion, only one memory element was needed, with its associated addressing and
data retrieval capabilities. The two types of information, data and instructions,
were combined into the same memory. The principa drawback to the arrange-
ment was that interaction with the memory element was now needed for both
types of information, and hence the path between computational functions and
storage functions became a primary impediment to the effective processing speed.
This has become known as the Von Neumann bottleneck, and we will present
some of the suggestions made to minimizeits effect. However, we will till treat
memory as a linear array of storagelocations, accessed by an appropriateaddress.

Another element shown in the figure is the data path. The width of the data
path is assumed to be the same as the machine, but, as with most generalizations,
exceptionscan be found. We will use that width as a natura value, and later we
will discuss ways to use widths other than the basic machine width for transfer-
ring information. These interconnectionscan be point-to-point wires from one
element to another (containing the appropriate number of individua wires), or
they can be buses, which are capable of transferring information between several
distinct elements. Direct connectionsallow for high speed, but have low versatil-
ity. With tri-state logic readily available, a number of alternative busing arrange-
ments can be made. We will discuss various typesof busesin Chapter 6.

The find element shown in Figure 4.1 is the register. For our purposes, this
is an eement that is as wide as needed to match the buses, memories, and ALUs,
used for storing information. This is another basic device that needs additiona
control lines not included in the figure. A register will require a clock line identi-
fying when data is stable on the input line, and the register should load that data
into its collection of storage elements. Other control lines may also be needed,
such as output control lines for tri-state devices, or shift/load control lines for
multifunction registers. Again, we will assume that the designer of the system is

Chap. 4: Instruction Set Processing

aware of the capabilitiesof the registers being used, and that appropriate control
lines are included in the machine.

Registersare used for a variety of applications, and generally receive names
that denote their function. Figure 4.2 shows a block diagram that will serve as a
vehicle for describing how the various registers and other elements function
together to accomplish work. By work we mean the information transfers
required to do some task. The registers shown in the figure form a fairly minimal
Set:

* Memory Address Register (MAR). This collection of storage elements bas the
responsibility of identifying the memory location of the information to be
transferred. The transfer could be either into or out of memory.

e Memory Buffer Register (MBR). The memory buffer register is used to store
information moved into and out of memory. With destructive readout devices,
such as core memory, it is a requirement; reading the value of a memory loca-
tion destroys the contents of that location, and to preserve what was there it
must be written back. The value to be restored is obtained from the MBR as
the value is being used by the other parts of the circuit. With most semicon-
ductor memories, the storage of the data going into and out of the memory is
not required, and this register is optional, and used only in systems where there
is a specific requirement to maintain the data after it is read.

Program Counter (PC). The program counter is used to identify the location of
the instruction to execute next. For machines that store one instruction per
memory location, this register will increment by 1 during the execution of an
instruction, which.is why it has become known as a program "counter.” Other
organizationswill have differing requirementsfor updating the PC vaue. For
now, we will assume that the program counter will increment as needed to
specify the next value needed from the instruction stream.

Instruction Register (IRj. The ingtruction register is used to store the instruc-
tion currently being executed. This allows the control portion of the machine
to assert the control lines Of the registers, memories, and arithmetic elementsin
an appropriate manner to cause the action needed. The design of the control
section will be the subject of the next chapter. The IR may only be as wide as

Memory
—{ MAR —}———s| Address
Daa
MBR
[mr] ALU
ACC

Figure42 Blodk Diegram of Smple Machine

Chap. 4: Instruction Set Processing 131

needed to store the operation code of the instruction, or it may be wide enough
to keep a temporary copy of al of the information associated with an instruc-
tion.

o Accumulator (ACC). The accumulator is shown here as the receptacle of the
action of al of the data manipulation instructions. In the next section we will
discussthe implicationsdf the use of an accumulator for doing arithmetic.

This collection of resources (registers, ALUs, memory, and data paths) pro-
vides a sketchy view of the system, but it is sufficient to represent transactions
that occur within the machine. We also need some method of describing those
transactions. To do useful work we will need to specify the work to be done, and
this work will be directed by the control section. The user of a computer system
has a view of what the capabilities of the computer system are, and this view
results directly from the instructions that the machine can execute. This view of
the machine, or the appearanceof the machine as seen by the assembly language
programmer, is sometimes caled the instruction set architecture of the system.
By the use of the instructionsincluded in this set, the user specifies the action
which should occur on the data.

This work of an ingtruction is accomplished by a fetch-decode-execute
mechanism: the instruction is fetched from memory and placed in a register
specifically designated for that purpose (the IR), the required decoding is per-
formed, and then the data transfers required by that instruction are executed. At
the completion of this action, the machine starts over again, requesting another
instruction, decoding it, and performing the needed action. The process continues
until the machine has completed all of the designated instructions.

The action of an instruction can be described by identifying the data
transfers needed to do the requested work. The specification of this work is done
by a register transfer language (RTL); the transfers occur along the permissible
data paths in the machine from one major component to another. Only transfers
that can actually occur, given an accurate block diagram of the system, are per-
missible components of the specification for an instruction. For example,
transfers from the PC or MAR to the MBR of the system shown in Figure 4.2
would not be possible, since the data paths between those elementsdo not permit
data transfer in that direction. Thus, RTL descriptions specify the order of register
transfers and arithmetic action required to carry out the work of an instruction.
This information can then be utilized by the designer of the control system to
identify the order of activation of control lines to actualy cause the desired
transfers. This points out one of the basic divisions of the computer design pro-
cess. the data path (with its appropriate arithmetic capabilities) is specified. and
then in a quite separate process the control section for the data path is designed.
The design of the data path section is done in such a way that data manipulation
goals are met. The design o the control section is then carried out so that the
timing requirementsof the system are met.

A register transfer language can become as smple or as complex as needed
to specify the transfers required in the system. Since we will be using an RTL to
describe the action of systems in this chapter and in the remainder of the book, we
will describe the few primitives which will follow. The basic operation is the
transfer of the contents of one register to another:

PC - MAR

Chop. 4: Instruction Set Processing

specifies that the contents of the program counter are transferred to the memory
addressregister. If the data paths of the systein are rich enough to dlow multiple
operationsin the same time period, these can be represented by specificaly link-
ing the transfers together:

PC+1 PC
MBR IR

identifies that in the same time period the value of the program counter is incre-
mented and the contentsof the MBR are transferredto the IR. Ncrmally, al of the
informationis involved in the transfer. However, if a subset of the information is
to be transferred, then the specific bits are identified by the use of pointed brack-
ets:

R<3:0> -5 ALU

specifiesthat bits 3 to 0 of the instruction register are directed to the ALU. Simi-
larly, locationsof memory or a set of registersare specified with square brackets:

REG[2] —» MEM[MAR]

indicates that the contents of register 2 in a genera register set (REQ is
transferred to the location in memory identified by the memory address register.
Finaly, for operations that are conditional in nature, we include an "if' facility
patterned after the C language if construct:

if(camy==1) PC-24 -5 FC
dse PCt1 - PC

identifies that if the carry isequal to 1, the program counter is adjusted by a factor
of —24; otherwise the program counter is incremented.

Using the above constructs, a wide variety of instructionscan be specified.
For example, consider the following add instruction:

fetch: These regider trandfersget the indruction.
PC — MAR Indructionlocationto MAR.
M[MAR] — MBR Ru ingructionin MBR.
MBR — IR And then put it in the IR.
PC+ llen —» PC Bump the program counter to next ingtruction.
Jnet_Ceabh . e . .
decode TmhaxﬂeprootES|daI|flestFE|n§rud|m.
execute: and the execute portion performs the nesded work.
IR<adr> —» MAR Addressd operand to MAR.
M[MAR] — MBR Thisisvdueto add to ACC.
ACC+MBR —» ACC [theactual work of instruction.

At this point we will pause to consider briefly some of the timing considera-
tions. All of the operations identified by the RTL require some finite time to
accomplish. Exactly how much time is required depends on the technology of
implementationand the electrical characteristicsof (! » system. A simple register

Chap.4: Instruction Set Processing 133

4.2.

transfer in a tri-state bus system requires time for the source register to be
enabled, time for the data to become stable on the bus, and a setup time and a
hold timefor the data a the destination register. These times become very impor-
tant to the designer of the control system, as al of the appropriatetiming require-
ments must be met. In this chapter, we will assign times for the operations
specified by the RTL for some of the ingtructions. These times, when added
together. identify the total time required for the execution of the instruction. The
times required for operations specified in RTL statements will be identified by a
number in parentheses with the statement, and that number represents the execu-
tion time in nanoseconds.

By identifying the times required for the actions specified by the RTL state-
ments, time can be used as a metric for the comparisons that need to be made in
system evaluations. The overal ingtruction rateis then the inverse of the average
instruction time. It is possible to increase the instruction rate (decrease the
instruction time) by increasing the complexity of the system. For example, con-
current register transfers can be possible if multiple data paths exist within the
system. Note, however, thet the increased complexity may also result in longer
machine cycle times, and this must be considered in the processof creatinga sys-
tem. As before, the tradeoffs involving complexity and speed must be made by
the system architect using reasonable engineering judgements based on metrics
that demonstrate the effectiveuse of system resources.

Another piece of information used in the RTL descriptionsincluded hereis a
statement number, which allows identificationof the steps of an instruction. This
identificationis often needed in the description of the process.

With the ability to represent the machines at the. register level, the data
paths connecting the registers and the transfers of data between the mgor com-
ponents, let us examine some of the methods used to organize machinesand per-
form useful work.

Single Address Machines

The first machines constructed made very judicious use of registers since registers
required a nontrivial amount of system resources. One of the registers was desig-
nated as the one that would be utilized in arithmetic and logic operations; others
were also involved as needed. The register involved in these operations was most
often called the accumulator, as we have indicated in Figure 4.2. This same tech-
nique has been used in many different machines, and providesinsight when com-
pared to techniques more prevalent in newer architectures.

On machines that operate in this manner, operations requiring only one
operand, such as complement, increment, clear, and the like, find the operand in
the accumulator. And the result remainsin the accumulator. Functions requiring
two operands also use the value in the accumulator as one of the operands. The
other operand is identified by a single addressin the instruction; hence the name
single address machine. To demonstrate how these machines might perform each
kind of instruction. let us use the block diagram shown in Figure 4.2 and identify
the transfers needed for a negate instruction and a subtract instruction. We are
assuming that the machine in question uses the two's complement number system,
so forming the negative of a given value can be accomplished by complementing
and incrementing. The following RTL description implements the negate instruc-
tion:

Chap. 4: Indruction Set Processing

fetch:

1 PC — MAR Indruction location to MAR.

2 M[MAR] — MBR Put instruction in MBR.

3 MBR = IR And then put it in the IR.

4 pctllen o PC Bump the program counter to next ingtruction.
decode
execute:

5 ACC — AcCc Complement vdue in Acc.

6 . ACCt+1 — acC And then increment it.

All instructions start as does this one, with the fetch cycle. The address from the
program counter, which identifies the location of the next instruction to execute, is
placed in the memory address register (step 1). The value pointed to by this
address is fetched from memory (step 2), and placed in the instruction register
(step 3). The machine then readjusts the program counter to point to the next
instruction (step 4). To correctly do this, the machine must be aware of the length
of the instruction. That is, it is possible that machines have instructions of dif-
ferent length, and when the program counter is adjusted to identify the next
instruction, the amount of that adjustment (llen) is information which is associated
with the instruction. For example, the 68020 has instructions ranging in length
from 2 to 14 bytes.

The actua work of the instruction is accomplished by steps 5 and 6 above:
the value in the accumulator register is fed to the arithmetic/logic unit, where it is
first complemented and that result is then incremented. In general, the exact steps
utilized to do the work of an instruction depend on the capabilities of the ALU in
the system. (Alternatively, the capabilities of the ALU can be based on the
requirements of the instruction set.) Usually two iterations through the unit will
not be needed. However, thisis a good example of some of the possible methods
that can be used to accomplish work: the system resources are used as required to
complete the tasks of an instruction. These transfers are coordinated by the con-
trol unit in agreement with the technology demands of the system.

The subtract instruction requires two operands. One question is the order of
operands: which should be the subtracted value? We will assume that the instruc-
tion SUB X means, subtract the value stored in the location X from the value
currently in the accumulator and store the result in the accumulator. We will
further assume that the address X is adequately contained in the instruction itself,
so no additional information beyond the instruction will be required. With those
assumptions, a set of data transfers that will perform the work of the subtract
instruction follows:

fetch:

1 PC - MAR Indruction location to MAR.

2 M[MAR] = MBR Put indructionin MBR.

3 MBR — IR And then put it in the IR.

4 rCtllen - pPC Bump the program counter to next instruction.
decode
execute:

5 X = MAR Put addressx in the MAR.
6 M[MAR] — MBR Vduea memory addressx to MBR.
7 ACC-MBR — ACC Subtract it from vaue currently in ACC.

The fetch cycle of this instruction is identical to the other fetch cycles: get the
instruction and bring it into the instruction register, then bump the program

Chap. 4: Instruction Set Processing 135

counter. The red work begins in step 5, where the address of the operand is
transferred to the MAR. The intended operand of the instruction, the value stored
at location X, is then transferred (step 6) to the memory buffer register. Since the
address is contained in the instruction, the value of X needed for step 5 can come
from either the instruction register or the MBR. Finally, the value is subtracted
(step 7) from the value currently in the accumulator, and the result |eft there. This
mechanism for doing the subtraction assumes a more capable ALU than did the
negate ingtruction above. If the ALU needed to form the negativeof the value in
the MBR by a complement and increment fashion, then additional operand storage
facilities would be required.

A number of variationsof this method have been made, while the machines
have remained basicaly single address machines. The IAS, Von Neumann’s
machine built in 1946-7, utilized a word length of 40 bits. The word length was
capable of storing more information than required for a single instruction and a
single address, so two 20-hit instructions were placed in a single 40-bit word.
Each instruction was composed of an 8-bit op code and a 12-bit address; up to
256 operationscould be specified, and, if needed, the single address could identify
one of 4,096 data locations. But although each word of storage was capable of
handling two addresses, the instruction format was limited to a single address per
ingtruction. The restriction of 12 bitsfor an addressin the single address machine
of IAS was not restrictive since the total addressable memory was only 4,096
words. However, this limit is generally not acceptable, so different mechanisms
have been implemented to extend the permissiblerange of the operands.

One of the mechanisms utilized for storing addresses needed to identify the
location of operandsis to place them directly after the operation code (op code)
that identifiesthe work to bedone. This method has several advantagesthat make
it an attractive dternative. If there is no need for an address (such as the negate
instruction above), then no room is taken up in the instruction itself for a value
(address), which will not be used. If multiple length addressesare permitted, that
is, addresses of 1, 2, or more bytes depending on addressing mechanism, then
only the requisite number of bytes after the op code are utilized to identify the
address. And after the fetch portion of the instruction the program counter
identifiesthe location of the addressitself. An RTL implementation of this type of
subtract ingtruction is shown in Figure 4.3. Notice the change that results if the
assumption is made that the operand address is located in the instruction stream
directly following the bits specifying the instruction.

TheRTL included in Figure 4.3 indicates that the program counter is used
twice, once for the address of the instruction to be executed, and once for the
addressof the operand. In the first instance, it was incremented by the length of
the ingtruction; in the second, it was incremented by the length of the address.
We are making the assumption here that the decoding of the instruction/address
identified the appropriate lengths and trested the program counter appropriately.
By separating the op code fetch from the addressfetch in this manner, the number
of bits needed to specify the operation is allowed to expand to meet the appropri-
ate requirements.

Example 4.1: RTL and timing calculations for ADD: How much time is
required to execute an ADD instruction for a machine organized as demon-
Strated above?

The time required for execution of the instruction will include the
time necessary to obtain the instruction from memory, decode it, and exe-

Chap. 4: Instruction Set Processng

Setch:

1 PC — MAR Instruction location to MAR.

2 M[MAR] — MBR Put instruction in MBR.

3 MBR — IR And then put it in the IR.

4 PC+1llen - PC Bump the program counter to next value
the PC will then point to memory location
holding the address of the operand.

decode
execute:

5 PC —» MAR PCisneeded again.

6 M[MAR]} — MBR Address at this location to MBR.

7 MBR — MAR Thisisaddress of operand.

8 M[MAR]} — MBR And thisis operand.

9 PC+Alen = PC Now bump PC by length of address.

10 ACC-MBR — ACC Subtract it from value currently in ACC.

Figure43. RTL Implementation of a Subtract Instruction for a Single Address
Machine.

cute the necessary steps. To determinethe time required for instructionexe-
cution, we must first develop an appropriate RTL implementation of the
operations. One such implementation is shown in Figure4.4.

Each of the itemsinvolved in Figure 4.4 will tak= time to accomplish,
and the time for the operation will be implementation dependent. We will
assume for the purposes of this example that the accesses to memory cost
300 nsec, the access to a register cost 50 nsec, and that the add itself can be
done in 100 nsec, not including the register time. The amount of time for
each of the operations identified above is given in the RTL itself. Note thal
we have assumed that the bumping of the PC can be done in the time it
takes to load the register. Also note that step 10 accounts for both the add
time and the register delay time. With these figures, we can see that the
total time is 1.1 psec. The instruction fetch itself requires 450 nsec, which
is Imost haf of the tota time. If we look only at the time metric, we can
dr;w some conclusions concerning the efficient use of time to accomplish

fetch:
I PC = MAR (50) Start by loading MAR.
2 M{MAR] - MBR (300) Andge instruction
3 MBR — IR (50) into the IR.
4 PC * llen — PC (50) Bump the program counter.
PC now points to address of operand.
decode
execute:
5 PC — MAR (50) PC is needed again.
6 M[MAR] -5 MBR (300) Thisisreally addressof operand.
7 MBR - MAR (50) So put in MAR.
8 M[MAR] - MBR (50) And get operand to MBR.
9 PCtAlen - PC (50) Now bump PC by length of address.
10 ACC*+MBR — ACC (150) ADD value in MBR to value in ACC.

(1100)

Figure44. RTL Implementation and Timing Considerations an ADD Instruction.

Chap. 4: Instruction Set Processing 137

the work of the system. If we now ask how many bits are required. and
what are the costs involved in storing and moving data, a different type of
conclusion may be available. However, this demonstratesthat the fetch of
an instruction from memory is definitely not free. It also demonstratesone
of the mechanismsthat can be used to obtain information about the execu-
tion time for instructions.

Oneof the single address machines built in the mid-1960s that enjoyed wide
popularity was the PDP 8, made by Digital Equipment Corporation. This was a
12-bit machine, a block diagram of which is shown in Figure4.5.

The ingtruction format called for a 3-bit op code, which left 9 bits of the
12-hit instruction for the address. With 3 bits for specifying the action of the
instruction, the possible operations were limited to 8, and these 8 were chosen
with care. Oneof them was an ADD instruction, which added to the accumulator
the value identified by the single addressincluded in the instruction. The 9 bits of
address specification in the instruction limited the number of addressable
operands, so different operand specification mechanisms, such as indirect address-
ing, were used to increasethe number of accessiblevalues. We will discuss alter-
native addressing methods in Section 4.4. The instructions that required an
address for operand identification, such as DCA (deposit value currently located in
the ACC to the memory location identified and clear accumulator). TAD (two's
complement add), and ISZ (increment and skip if zero), used the 9 address bits to
specify the location of the operand. Instructionsthat did not require an address,
such as CLA (clear accumulator),INA (increment accumulator), and CLE (comple-
ment accumulator),expanded on one of the eight available op codes to specify the
action to take place.

Muitiplier Quotient

Memory Buffer

JI Memory Addressl-————

Register Timin
Program Counter Control Control

Input ™ adder and Load Instruction Interrupt
Gating Shifter L o Gates | _Reqister Control

Network

1 1

ANIBU

idress and Data Lines

g™

1 1 l

Console Panel Core
{Switches, Llghts) Address Mermory Sense/
Decoding 4096 Inhibit
Words

Figure45. Block diagram of the PDP 8 Computer.

Chap.4: Instruction Set Processing

The format of the PDP 8 instruction set is given in Figure 4.6. At the time
of the creation of the system, memory was a very expensive system resource, and
hence the word length was limited to 12 bits. As the relative costs of memory
and other system components change and diminish, uses of those system
resources will also be appropriately change. The designers of the PDP 8 system,
with a limited number of bits to work with, chose the operations of the system
with care. A 3-bit op code limited the number of instruction patterns to 8. Six of
the possible instructions required an address, and this address was determined by
the 9 LsSBs of the instruction. These six instructions were logical AND, add,
increment-and-skip-if-zero, deposit-and-clear-accumulator, subroutine jump, and
unconditional jump. Another of the eight patterns identified an UO instruction,
and the remaining 9 bits specified one of 64 IO devices, and one of eight opera-
tions. The operations were defined by the design of the UO device itself. The
final pattern identified instructions that needed no address, and hence could al
share a common instruction code in the op code hits. This allowed a number of
operations to be specified, such as clear the accumulator, or increment the accu-
mulator, and so on. One of the most challenging tasks facing a computer architect
is to identify the instructions to be incorporated into a new machine, and then
encode the specification of those instructions in a format acceptable for the new
system. We will examine some more examples of instruction formats later in this
chapter, each of which demonstrates a different view of the optimal utilization of
system resources.

All of the above examples have acommon operational mode: the instruction
stream provides a single address, and this address is utilized to identify the loca-
tion of an operand. For data operations, that operand is used in conjunction with
whatever is needed in an assumed location (the accumulator), and the result is left
in a predefined place, usualy the accumulator. With this type of a machine all of
the operations needed by a system can be performed, but the result may not be as
efficient as desired. With the fetch utilizing a large fraction of the instruction
time, one approach would be to try to utilize more effectively the information
fetched from memory. One method proposed for this is to make the system more

Op Addr
Code Spec Address
Single Address ’
nstructions l 1 I | I I I I I |
1110 9 8 7 6 5 4 3 2 1 0
. Device
/O Unit ID Operation
/0 Instructions [1 { 1 | ol Ll L |

110 9 8 7 6 5§ 4 3 2 1 0

Operation Sdlection

Instructions with
no Address Requirement [1l1|1| IS T N T

1110 9 8 7 6 5§ 4 3 2 1 0

Figure46. Ingruction Formats for the PDP8 Computer.

Chap. 4: Instruction Set Processing 139

140

4.3.

efficient by using more than one addressin a single instructionto specify a greater
variety of operationsand operands.

Multiple Address Instructions

Multiple address instruction formats carry with them both benefits and added
specification requirements. With a single instruction more operations art
identified, so fewer instructions are required to implement a string of arithmetic.
At the same time, the instructions must identify all of the work to do, since no
assumptions will be made concerning the location of the data. Thus, multiple
address instructions will identify both source and destinationof the information.
The myriad possibilitiesare exemplified by the following formats:

ADD2 AB
ADD3 ABC

Although the system architect can choose any reasonable specification mechan-
ism. the assumption we will make concerning the syntax of these instructions is
that the fina address specified is the destination of the function. With this
assumption, the ADD2 instructionadds the value in the location identified with the
A addressto the value in the location identified by the B address, and the result is
returned to the location specified by the B address. Thus, this instruction changes
the value identified by the B address. The ADD3 instruction obtains the operand
identified by address A. adds to it the value stored at the location specified by
address B, and places the result a the location identified by addressC. In a
machine that utilizes this type of capability. the op codes must differentiate
between the various types of operations.

That is a separate code must be availablefor each instruction; ADD2 and
ADD3 will be specified by different patterns. This results in a larger operation
code field, since many different codes must be representable. And it also results
in different length ingtructions. since some instructions will require three
addresses, while others will requireonly two. Consider the following example, in
which we compare two and three addressadd instructions.

Example 4.2: Two ond three address instructions: Compare the operation of
the ADD2 and ADD3 instructions, using the times identified in Example4.1
Assume that the operation codes reguire the same number of bits to
represent as the addresses. (Is this a valid assumption?) What is the execu-
tion time required for each of the instructions?

In order to address these questions, we need to identify some of the
details o the system. That is, before the RTL of implementation can be
determined, we need to understand what mechanismsare being utilized. Let
us assume that the first vaue obtained from memory at the location
identified by the PC is the appropriate op code, and that the next valuesare
the respective addresses. This is somewhat simplistic, as we shall see alit-
tle later. But it will help to identify some of the underlying issues. The
next problem to be dealt with needs a little more detailed consideration.
This considerationis the mechanism for the addition: how is it to be carried
out. In order to visuaize the transfers necessary and the order of events, we
need to know the available registers and their interconnection. The basic
elements required for this example are given in Figure 47. The figure has

Chop. 4: InstructionSet Processing

Memory
MAR

Figure 47. Block Diagram of System for Example 4.2.

two registers, Tl and T2, which are not pan of the instruction set architec-
ture. That is, the system as defined by the instruction set does not include
these storage elements. However, they are very useful when doing instruc-
tions that require holding information to be utilized by the system. Armed
with this knowledge about the underlying structure, let us examine RTL
representations of the instructions.

TheRTL statements describing one implementation of the two address
ADD instruction is found in Figure 4.8. The figure also contains timing
information with the RTL statements, indicating the time required to com-
plete the task.

The RTL for the three address case is included in Figure 49. Note the
similarity with the two address version in the initial stages of the instruction

fetch:

| PC = MAR (50) Addressof ingtructionto MAR.
2 M[MAR] - MBR (300) Indructionto MBR.
3 PCtllen - PC (50) Bumpthepc to point a address.
4 MBR = IR (50) Ingtructionfindly to IR.
decode
execute:
5 PC = MAR (50) Go get addressd operand.
6 FCtAe - FC (50) Bump RC to point a next address.
7 M[MAR] - MBR (300) Thisisaddressof first operand.
8 MBR = MAR (50) Soputin MAR.
9 M[MAR] = MBR (300) And get the vdue there. first to MBR.
10 MBR = TI (50) AndthentoTlI.
1 PC - MAR (50) Thisistoget addressof second operand.
12 PCtAln - FC (50) BumpPc to next instruction.
13 M[MAR] - MBR (300) Addressof second operand to MBR.
14 MBR — MAR (50) And then to MAR.
15 M[MAR] — MBR (300) The second operand goesto MBR.
16 MBR — T2 (50) AndthentoT2,
17 Tl +T2 5 MBR (150) Do the add. resultsto MBR.
18 MBR -» M[MAR] (300) Put resultswhere operand two used to be

(2500) Tota time 2.5 psec
Figure 48 RTL Implementationaf a Two Address ADD Instruction.

Chap.4: instruction Set Processing 141

4.3.

efficient by using more than one addressin asingle instruction to specify a greater
variety of operationsand operands.

MultipleAddress Instructions

Multiple address instruction formats carry with them both benefits and added
specification requirements. With a single instruction more operations are
identified. so fewer instructionsare required to implement a string of arithmetic.
At the same time, the ingtructions must identify all o the work to do, since no
assumptions will be made conceming the location of the data. Thus, multiple
address instructions will identify both source and destination of the information.
The myriad possibilities are exemplified by the following formats:

ADD2 AB
ADD3 ABC

Although the system architect can choose any reasonable specification mechan-
ism, the assumption we will make concerning the syntax of these instructionsis
thet the fina address specified is the destination of the function. With this
assumpnion, the ADD instruction adds the valuein the location identified with the
A addressto the value in the location identified by the B address, and the result is
returned to the location specified by the B address. Thus, this instruction changes
the value identified by the B address. The ADD3 instruction obtains the operand
identified by address A, adds to it the value stored at the location specified by
address B. and places the result a the location identified by address C. In a
mechine that utilizes this type of capability, the op codes must differentiate
between the varioustypes of operations.

That is. a separate code must be available for each instruction; ADD2 and
ADD3 will be specified by different patterns. This results in a larger operation
code field, since many different codes must be representable. And it also results
in different length instructions, since some instructions will require three
addresses, while others will require only two. Considei the followingexample, in
which we compare two and three addressadd instructions.

Example4.2: Two and three address instructions: Compare the operation of
the ADD2 and ADD3 instructions, using the times identified in Example4.1.
Assume that the operation codes require the same number of bits to
represent as the addresses. (Isthisavalid assumption?) What is the execu-
tion time required for each of the instructions?

In order to address these questions. we need to identify some of the
details of the system. That is, before the RTL of implementation can be
determined, we need to understand what mechanismsare being utilized. Let
us assume that the first value obtained from memory a the location
identified by the PC is the appropriate op code, and that the next values are
the respective addresses. This is somewhat simplistic, as we shall see alit-
tle later. But it will help to identify some of the underlying issues. The
next problem to be dedlt with needs a little more detailed consideration.
This cansideration is the mechanism for the addition: how is it to be carried
out, In order to visuaizethe transfers necessary and the order of events, we
need to know the available registers and their interconnection. The basic
elements required for this example are given in Figure 4.7. The figure has

Chap. 4: Instruction Set Processing

Memary

Driver

Figure4.7. Block Diagram of System for Example 4.2

two registers, T1 and T2, which are not part of the instruction set architec-
ture. That is, the system as defined by the instruction set does not include
these storage elements. However, they are very useful when doing instruc-
tions that require holding information to be utilized by the system. Armed
with this knowledge about the underlying structure, let us examine RTL
representations of the instructions.

The RTL statements describing one implementation of the two address
ADD instruction is found in Figure 4.8. The figure also contains timing
information with the RTL statements, indicating the time required to com-
plete the task.

The RTL for the three address case is included in Figure 4.9. Notr the
similarity with the two address version in the initial stapes of the instruction

Seich:

1 PC ~ MAR (50) Addressdf instructionto MAR.

2 M[MAR] - MBR (300) Instructionlo MBR.

3 PC*tlen = PC (50) Bump the PC to pornt & address.

4 MBR — IR (50) InstructionfinalyloIr.
decode
execute:

5 FC -» MAR (56) Go get address of operand.

6 FRC*tAlen - PC (50) Bump RC 10 pomt a next address.

7 M[MAR] = MBR (300} This is address of first operand.

8 MBR = MAR (50) SO put in MAR.

9 M[MAR] - MBR (3005 And get the value there, first |0 MBR,

10 MBR - TI (50) AndthentoTI.

3 PC — MAR (50) Thisisto get addressof second operand.

12 PCtAlcn -» FC (50) Bump FC to next instruction.

13 M[MAR] - MBR (300) Addressof secoad operrnd w MBR.

14 MBR -3 MAR (s0) And thento MAR.

15 M[MAR] = MBR (300) The second operand goes |0 MBR.

16 MBR — T2 (50) And thento T2.

{7 TI+N - MBR (150) Do the add, resultsto MBR.

18 MBR — M[MAR] (300) Put resultswhereoperand two used |0 be.

(2500) Total time: 2.5 psec

Figure 48 RTL Implementationof a Two AddressA DD Instriction

Chap. 4: Instructlon Set Processing 141

fetch:

1 PC = MAR (50) Addressd indructionto MAR.

2 M[MAR] — MBR (300) Instruction t0 MBR.

3 PC+llen - PC (50) Bump the PC to paint at address.

4 MBR 3 IR (50) Now, indtructionto IR.

decode
execute.

5 PC — MAR (50) Thisistoget firs address.

6 FC+Ae: - FC (50) And bump PC by address length.

7 M[MAR]} = MBR (300) Now the address to the MBR.

8 MBR — MAR (50) And then totheMAR.

9 M[MAR] - MBR (300) Thisisthefirgt operand.
10 MBR — TI (50) SopuitinTl.

I PC = MAR (50) Now, go get the second address.
12 PC+Akn - PC (50) Bump the PC appropriately.
13 M[MAR] — MBR (300) Thisis the addressitsdf.

14 MBR -» MAR (50) So, putitin the MAR

15 M[MAR] - MBR (300) Now, get the second operand.
16 MBR — T2 (50) And put it in T2.
17 PC - MAR (50) Gottago get thefina address.

18 PC+Alen = PC (50) Bump PC to point to next ingtruction.
19 M[MAR] - MBR (300) Get the addressof the result.
20 MBR ~ MAR (50) And putin theMAR.
21 Ti +T2 - MBR (150) Thisisactud work of the instruction.
22 MBR =3 M[MAR] (300) Putin location specified by third address

(2950) Totd time 2.95 psec

Figure49 RTL Implementation of a Three AddressADD Intruction.

implementation. Then, when fetch has been completed and the actual work
of the instruction begins, the statements in the RTL reflect the different
action of the two instructions.

Since the addresses of the operands are stored in the instruction
stream, obtaining and storing information requires two memory references
for each value: one to obtain the appropriate address, and another to utilize
that address for a fetch or store. Each of these interactions requires time to
complete, resulting in seemingly long instruction times, 25 psec for the
ADD2 instruction and 2.95 psec for the ADD3 instruction. As would be
expected, the ADD3 instruction takes longer than the ADD2 instruction, since
one more address is involved in the operand specification. This requires
modifying the PC to point at the address, and an additional memory access
to fetch to get the appropriate address. The resource utilization of these
instructions can be viewed in number of ways. If one simply looks at the
time required for the instruction, then the ADD2 instruction is more attrac-
tive than the ADD3 instruction. However, if one looks at the time required
to implement a set of operations, such as

X=Y-Z+W"'V

then the differences become more apparent:

Chap. 4: Instruction Set Processing

With ADD2 With Avps

MOVE Y.,X AND3 Y,Z.T
AND2 Z,X AND3 W\VY
MOVE WY ADDS Y. X
AND2 V)Y
ADD2 Y. X

The stream of instructionsthat utilize the ADD2 method require 15 memory
locations to store and 12.5 psec to execute; the ADD3 method requires 12
memory locations, and executes in 8.55 psec. In contrast to the above
methods, a single address implementation of the equation would require 14
memory locations to store, and be executed in 8.95 psec, making similar
assumptionsabout the address storage and execution mechanisms. To more
appropriately evaluate the merits of one, two, and three address instruction
mechanisms, a more complete set of exampleinstructions and system usage
is required.

It is possible to generate examples in which each of the mechanisms dis-
cussed thus far — single address machines, two address machines, and three
address machines — has a better time characteristic than the other two. Among
other things. this indicates that the metric we have chosen for comparison, com-
bined with the underlying assumptions, is not a sufficient test. To make a more
reglistic comparison, further anayss and additional criteria are required.
Nevertheless, the above example illustrates a viable method: when a choice
between different alternativesis to be made, a metric is chosen that demonstrates
the use of the appropriate system resources, and the associated costs are deter-
mined. Caution must be exercised to ascertain that the costs not included in the
metrics will not underminethe effectivenessof the comparison.

One observation that could be made concerning the system is that a great
deal of the execution time for the ADD2 and ADD3 instructions, as shown above,
is consumed in fetching addresses of operands and the operands themselves. A
similar comment can be made concerning the number of bits required to store the
addresses: if the range of addressescan be limited in some fashion, the number of
bits required for addresses (and hence the entire instruction) can be greatly
reduced. For both of these reasons — the time required for operand access and
the number of bits needed for address specification — register sets have been
included in machines.

The use of a register set reduces the time required for instruction perfor-
mance. One demonstration of this is to rework Example 4.2, this time assuming
that the add instructionsdeal with valuesin registers, rather than valuesthat reside
anywhere within the memory space of the machine. The block diagram for this
exampleis given in Figure 4.10. Note the similaritiesand differenceswith Figure
4.7. The main differenceis the inclusion of a set of registers, shown here to con-
tain 8 different storage locations. Thus, to represent the operand location requires
only 3 hits, and this field can be incorporated into the instruction format. The net
result is a reduction in the number of memory referencesrequired by each instruc-
tion to get information.

Example 4.3: ADD2 and ADD3 instructions with registers: Again compare

the operation of the ADD2 and ADD3 instructions, but this time assume that
the operands reside in registers, and that the register specificationis con-

Chop. 4: Instruction Set Processing 143

144

H H
ALU

Register
Register Selact
Bank
e MAR Memory
[_MBR_|

Figure410. Blodk Diagram of System for Example4.3.

tained within the instructionitself. That is, an additiona memory cycle to
obtain addresses is not required, since the identification of the appropriate
register is accomplished by using a multiplexer (register select MUX) to
select the appropriate bits from the instruction register, as shown in Figure
4.10.

The RTL required for this example follows the RTL for the previous
example, with the obviousdifferences:

ADD2 Ry, Rg ADD3 Ry, Rg, Re
PC — MAR (50) PC -4 MAR (50)
MIMAR] - MBR (300} M[MAR] = MBR (300)
PC* Itea - PC (50) PC*t1llen = PC (50)
MBR = IR (50) MBR -4 IR (50)
R, = Tl (50) Ry = Tl (50)
Rg = N (50) Ry -4 T2 (50)
TI+T2 = Rg (150) TI+T2 - R (150)
(700) (700)

Note that the operands are in the registers, and the resulting instruction
times reflect the reduced requirementsfor operand access. Both instructions
now require 700 nsec, but we must recognize that the storage requirements
are different for both instructions. That is, the ADD2 instruction must be
wide enough to include two addresses, while the ADD3 instruction must be
even wider, sufficient for three addresses. If all instructionsare to be the
same width, it must be the wider of the two formats. That is, if instructions
are to be a common width (to match a memory congtraint. for example),
then the word width must match the widest instruction. For a system utiliz-
ing this technique, an instruction that requires fewer than three addresses
will waste some of the capabilitiesof the storage mechanisms. The point is
that tradeoffs must be applied to each situation to determine their relative
merits, and the choice of the metric will directly impact the comparisons.
The metrics may include the number of bits (or bytes) required to store a
program segment, the time required to execute, the complexity of the algo-
rithms required to implement the instructions. or any of a number of other
appropriate metrics.

Chap. 4: InstructionSet Processing

44,

The above example demonstrates that the use of registersgreatly reduces the
time requirements for instructions. As mentioned above, the main reasonsfor this
are the reduced time requirements for interacting with the operands and reduced
memory requirementsfor storing the instruction itself. The reduced time require-
ments for operand access result from the fact that register access is faster then
main store access. The reduced memory requirementsare a function of operand
identification, since identification of an appropriate register requires a faw hits,
while identification of a main store address requiresa great many more bits. We
have used the example of the IAS which used 12 bits to identify a location in
memory; more recent systems. such as the 68030 microprocessor, require as many
as 32 hits to specify alocation in memory.

A number of existing machines utilize multiple addressformats, and we can
benefit from an examination of the instruction set architecture of those systems.
However, before we consider those machines, we will need to examine a “fcature™
that we have ignored to this point. The very mechanism that savestime by reduc-
ing the memory requirementsalso reducesto a very small number the allowable
locationsfor operandsto reside. However,in genera. we would like to be able to
access any operand, and operands should be able to reside anywhere in main
store. Thus, some mechanisms must exist that will alow operand access to arbi-
trary locations. Let us examine some of the mechanisms used for operand access.

Operand Addressing Mechanisms

When an instruction requires an operand for execution, the location of the operand
can be assumed. as in the QLA (clear accumulator) instruction, or the operand
location can be identified in the instructionitself. In this section we will examine
different mechanisms for the specification of the location of the operand. First we
will look & direct and indirect addressing, and some variations of indirection that
have proved useful in different machines. Then we will look a some of the
indexed and register relative modes. Combinationsof these mechanisms will pro-
vide the versatility needed to identify locationsin main store for al types of
machine ingtructions. A visua representation of the addressing mechanisms is
included in Figure 4.15 (page 154), and it may be useful to refer to that figure
throughout the section.

In our discussion of addressing modes, we are concerned with the manner of
specification of the effective address of the operand. That is, how is the location
of the operand identified. Thus, we are concerned with the generation mechanism
or formulafor the effective address (EA).

The term "direct addressing” refers to the situation where the effective
address of the operand is supplied directly by the instruction. Thus, for direct
addressing

EA=A
That is, for the ADD2 X, Y ingtruction. with direct addressing,
EAoperanD) = X

EAoperanD2 = Y

The actua address is contained within the instruction. This is the situation that
was assumed for the instructions considered in Example 43. As we have

Chap. 4: Instruction Set Processing 145

mentioned, various costs associated with this method diminish its effectiveness, so
other approachs to operand identification are used. One useful mechanism is to
use the information contained in an instruction to identify not the operand, but
rather the address of the operand.

The term indirect addressing is applied when the instruction identifies not
the operand, but rather the location of the operand. That is, for an ADD2 X Y
instruction with indirect addressing,

EAcoperanp | = M[X]|

EAoperanp2 = MIY]

The information in the instruction tells the machine where to find the address of
the appropriate operand. Different manufacturers have different mechanisms for
specifying that a value identified by the instruction is not an operand, but rather
the address of an operand. The mechanism we will use is to include an asterisk
(*) before the operand specifier. Thus,

ADD2 X.Y

specifies an instruction that adds a value stored at location X to a value stored at
location Y. However,

ADD2 *X. *Y

specifies an instruction that adds two values: the address of the first value is found
at location X, and the address of the second value (as well as the result) is found
at location Y. These mechanisms can be combined in instructions, so that

ADD2 *X.Y

adds the value found in main store at the address found in location X to the value
at location Y, and the result is placed in location Y.

The usefulness of indirect addressing is best demonstrated by example.
Then a variety of uses becomes apparent, such as accessing arrays in a regular
fashion or accessing information in a data dependent fashion.

Example 4.4: Indirect addressing: Using indirect addressing and two
address instructions, demonstrate a method for adding the elements of three
single dimensional arrays together. These arrays are located in main store.
and their starting locations are also found in main store at the locations
named ARRAY,. ARRAY,, and ARRAY,. The result is to be placed in an
array in main store, the starting location of which is in a location named
ARRAY,.

We have not yet considered the branching instructions needed for this
problem, so those functions will be identified but not specified. Also, we
will make the assumption that the information is stored one value per loca-
tion (instead of double precision or other considerations), so that increment-
ing an address by one automatically points to the next vaue. This addition
could be performed in a number of ways, but one way is demonstrated by
the following instructions.

Chap. 4: Instruction Set Processing

Set up problem firgt, then enter this loop:

over: MOVE *ARRAY,, TEMP Gd vduefrom fird array.
ADD2 *ARRAY,, TEMP Ard add value from second array.
ADD2 *ARRAY;, TEMP Ard third array.
MOVE TEMP,'ARRAY, Nowv move answer to right spot.
With the arithmeticover, adjust

the addresses gppropriately.
INC ARRAY | These increment ingructions
INC ARRAY, bump each address to point
INC ARRAY, to the next vdue.

INC ARRAY,
if nor done. go to over Bd d loop.

Note that the MOVE and ADD2 instructions access the information in the
arrays indirectlv. Thus, the location identified in the instruction IS not the
location of the operand, but rather the location where the address of the
operand is found. Then the increment instructions, which access their
appropriate locations directly, cause the addresses to point to the next ele-
ments of the appropriatearray. The way in which the above section of code
was written modifies the locations ARRAY 4, which is in general not a good
idea. A better solution would have been to place these addressesin tem-
porary locations and operate on them in those locations. Another comment
that can be made concerns the use of the temporary location. The location
would not be needed if the MOVE instruction placed the value in the loca
tion identified by ARRAY,, and the subsequent ADD2 instructions used that
location to sum the value. Thus, the number of memory locations needed
for the execution of the program would be reduced. However, indirect
referencesrequire one more memory reference than direct references, so the
required time to complete the code would be increased. Thus, the ""best"
solution will be determined by which metricis the critical one for the appli-
cation.

Including both direct and indirect addressing mechanisms in an instruction
set alows a wide variety of operand access capabilities. These concepts are
directly applicableto systems with register sets, where the identification bitsin the
addressrefer to a specific register. Direct addressingin this fashion is sometimes
referred to as register direct addressing. An indirect reference occurs when the
value contained in the register is an address identifying the location in main store
of an operand. This would then be register indirect addressing, and operates in
the same fashion as the indirect addressing mentioned above. The benefitsaf this
mechanism have already been identified: the number of bits required to specify
the address are reduced, and the time requiredfor register accessis much less than
that required for main store access.

Example 4.5: Cost of direct and indirect addressing: Determine the times
for the ADD2 instruction using direct and indirect addressing. Compare the
system of Figure 4.7, which doesn't have a register set, with the system of
Figure 4.10, which includes a general register set.

The times required for these instructionscan be obtained only if we
know the set of register transfers required to accomplish the work of the
additions. So, the first step is to obtain the RTL of instruction implementa-
tion. First we will look at the system without registers, then observe the

Chap. 4: Instruction Set Processing 147

effect when aregister set is available. The direct addressing implementation
of the ADD2 instruction is shown in Figure 4.11. The transfers required to
perform the work consume a total of 2.5 psec. Of that time, 0.450 psec is
required for fetching the instruction, the other 2.05 psec is used in execu-
tion. Another view of the time requirements comes from examining the
time usad by the memory interaction. There are Sx memory transfers, one
for the instruction and five for addresses and operands; these total 1.8 psec.
We would expect the indirect addressing example to take even more time,
and this is confirmed by examining the RTL of the indirect addressing ver-
son contained in Figure4.12. The indirect addressingsystem is longer, but
only by 0.7 psec. The instruction fetch again took 0.45 psec, while the
eight memory transfers consumed 2.4 psec, or 75% of the total instruction
time. Thisgivesan indicationof oneof the reasonsthat computer architects
have attempted to reduce the memory interaction as much as possible. The
times involved in the register implementationsof the ADD2 instruction indi-
cate how well that can be accomplished.

The work required for register-oriented ADD2 instructions, both for
direct and indirect addressing, is demonstrated by the RTL implementations
in Figure4.13.

An examination of the implementationsof Figure 4.13 indicates that
indeed time is saved when the operands (and/or addresses) are contained in
the registers. When the operands are located directly in the registers, then
the ADD2 ingtruction requiresonly 0.7 psec, 28% of the time required for
the memory implementation. The principa contributor is the fact that this
implementation requires only one memory transfer, compared to six
transfersfor the ADD2 X, Y instruction.

ADD2 X. Y (Direct Addressing)

fetch:

PC — MAR (50) Firg, addressd indructionto MAR.

PCt+Hen -» PC (50) Now bump pC.
M[MAR] — MBR (300) Retrieve indruction.
MBR — IR (50) Ard moveto IR.

decode
execute:

PC — MAR (50) Thisto get address o x.
PCtAlen — PC 0 Bump FC by length o address.
M[MAR] - MBR (300) MBR row containsaddressd X.

MBR — MAR (50) SO put in MAR.
M{MAR] - MBR (300) Ard retrieve x.
MBR — TI (50) Move operand to T1.
PC - MAR (50) Do same thing for v.
PCtAlen — PC (50)
M[MAR] - MBR (300)
MBR — MAR (50)
M{MAR] — MBR (300)
MBR — T2 (50) Movey to T2.
TI+T2 - MBR (150) Do the ADD.
MBR — M[MAR] (300) Ard Storeback whare Y was
(2500)

Figure411. RTL Implementation d a Two Address ADD Instruction with Direct
Addressing.

Chap. 4: Instruction Set Processing

ADD2 *X, *Y (Indivect Addiessing)

fetch:
PC - MAR (50) As before, address of instruction to MAR.
PCt+llen —» PC (50) Bump FC.
M[MAR] — MBR (300) Retrieve instruction.
MBR - IR (50) And move to IR.
decode
execute:
PC — MAR (50) This to get address of address X.
PCtAlen — PC () Bump PC by length of address.
M[MAR] = MBR (300) MBR now contains address of address X.
MBR — MAR (50) So, put in MAR.
M[MAR] -5 MBR (300) And retrieve address of X.
MBR - MAR (50) Put address of X in MAR.
M[MAR] — MBR (300) And retrieve X.
MBR — TI (50) Move X toTI.
PC - MAR (50) Do same thing for Y.
PC+Alen - PC 0
M[MAR] — MBR (300)
MBR — MAR (50)

M[MAR] - MBR (300)
MBR - MAR (50)

M[MAR] — MBR (300)
MBR — T2 (50) MoveY to T2.

T1+T2 > MBR (150) Do the ADD.
MBR — M[MAR] (300) And store back where Y was.
(3200)

Figure 412 RTL Implementation of a Two Address ADD Instruction with Indirect
Addressing.

A similar savings is obtained with the register indirect method, also
shown in Figure 4.13. The speedup of the register indirect implementation
is not as dramatic as the register direct method, but 1.7 psec is 53% of the
time required by the system when no registersare present. Again the differ-
ence reflects the extent to which memory is utilized: with registers the
instruction required only four memory transfers, while the system without
registers required eight memory transfers. The following table summarizes
this information:

Addressing Memory Fetch Execute Total
Technique References Time Time Time
Direct 6 450 2,050 2,500
Indirect 8 450 2,750 3,200
Register Direct 1 450 250 700
Register Indirect 4 450 1250 1700

Note from the table that the instructionfetch time of all of these instructions
is identica. For the ADD2 *X, *Y instruction, this is only 17% of the
ingtruction time, while for the ADD2 Ry, Ry instruction, this is 64% of
the instruction time. This will form a portion of an interesting obsecvation
later in the chapter.

Chap.4: InstructionSet Processing 149

ADD2 Ry, Ry (Register Direct Addressing)

ferch:
PC 4 MAR (50) Once again. address of indtruction to MAR.
PCtllen — FC (50) BumpPC.
M[MAR] 4 MBR (300) Retrieveindruction.
MBR - IR (50) And moveto IR.
decode
execute:
Ry = TI (50) Getfirst operand to T1.
Ry 4 12 (50) Get second operand to T2.
T+ T2 4 Ry (150) And result back toRy. -
(700)
ADD2 *Ry, *Ry (Register Indirect Addressing)
fetch:
PC 4 MAR (50) Addressof ingtruction to MAR.
PC tllen — PC (50) BumpRC
M{MAR] 4 MBR (300) Rdrieveindruction.
MBR 4 IR (50) And movetoIR.
decode
execute:
Ry — MAR (50) Ry holdsaddressd firgt operand.
M[MAR] — MBR (300) Retrieve operand.
MBR — TI (50) AndputinTI.
Ry = MAR (50) Ry holdsaddressof second operand.
M[MAR] — MBR (300) Retrieve operand.
MBR — T2 (50) AndputinT2.
Tl + T2 = MBR (150) Do the work.
MBR — M[MAR] (300) And storeresults.
(1700)

Figure413. RTL Implementation of a Two Address ADD Instruction
with Register Direct and Register Indirect Addressing.

Theinclusion of registersin the system reduces the time required to perform
most functions, as shown in the above example. The register indirect method is a
very useful mechanism for identifying the location of operands in main store. In
a previous example, we considered the use of indirect instructions to access every
element in an array. This type of mechanism is used often enough to justify
including a specific addressing mode which handles the incrementing of the
address automatically. This is called an autoincrement capability, and is included
in many instruction sets. We will indicate that an address is to be incremented
after it is used by including a plus sign (+) after the indirect specification. That is,
an ADD instruction that uses the indirect autoincrement mechanism for its first
operand and register direct access for the second operand would be specified as

ADD2 *Rx+, Ry

The increment amount used in the instruction is generally tied to the size of the
operand. That is, an instruction set may have three different integer add instruc-
tions: one for byte, one for word (two bytes), and one for double word (four
bytes) operands. The process of autoincrement for these instructions would
increase the address by one, two, or four, respectively, for the different situations.

Chap. 4: Instruction Set Processing

The autoincrement mechanism is very useful for dealing with data in data
structures within the computer. For example, one data structure utilized exten-
svely in some types of processing is the stack. Stacks can be created in main
dore by dlocating space for the structure and associating a “'stack pointer
addresswith it. Conceptually, information is placed on a stack and then removed
asneeded. That is, it is alast-in, first-out mechanism for storing information. We
will identify some of the uses of this type of information storage later in this
chapter.

Stacks can be constructed by means of a humber of methods, but perhaps
the mogt prevalent mechanism is to alow the stack to grow downwards in
memory. A POP operation for such a stack is included in Figure 4.14. The
address provided by Rgrack pomnter iNdicates where the current top of the stack
(TOS) is located. This address can identify either the next available location for
storing information, or it can specify the location containing the information on
top of the stack. For a stack that grows downward in memory, the common
mechanism is to utilize an addressthat points to the value currently on the top of
the stack. Notice that the action of extracting information from the stack can be
achieved with the register indirect autoincrement addressing mode:

MOVE *Rsrack pointerts Rx

The above ingruction moves information from the stack to Rx. Since
Rstack POINTER POINtS to the value currently on the top of the stack, the read
action transfers that value from the memory at that location. Then the system
automatically increments the stack pointer by the appropriate amount, and at the
end of the instruction the stack pointer identifies the next element to be on the top
of the stack.

POP Operation for Stack which Grows Downward In Memory

TOS —;

Before POP
TOS points to
data located
at the top of
me stack

Figure4.14. Sack Mechanisms in Main Store.

identified by TOS; then
TOS.is incremented
b partto value now
on top of stack

Chap.4:instruction Set Processing

Higher Higher Higher
Me‘ce’mory BOS Memory BOS Memory
Addresses Addresses Addresses
Stack Stack
Area Area
in in
Memory Memory
4 Lower % 23 Lower TOS Lower
4 Memory TOS—* Memory Memory
Addresses Addresses Addresses
Duing POP
; After POP
datais removed)
from memory location TOS points to

location which holds
value on top of stack

151

To complete the data transfers needed for stack implementation, we must
consider the action required to place information on the stack. Obviously, we will
need the ahility to decrement the address in Rsrack pointer- 1O dO this, many
instruction sets also include an autodecrement facility. This works in exactly the
same fashion as the autoincrement mechanism, except that generaly the decre-
ment is done before the address is used, rather than after. In this text we will
assume that all autoincrement operations are postincrement operations, and that all
autodecrement operations are performed in a predecrement manner. This permits
the following pair of operationsto be used for stack manipulation:

MOVE Ry, *Rgrack Pointer— Push valuein Ry onto stack.
MOVE *Rgrack poiver+ Rx ~ Pop vaduefrom dadk toRy.

The first instruction does a push: the address in Rgrack pomnter is first decre-
mented and then used as an address by the system, and the informationin Ry is
written to that address in main store. The second instruction is used to pop infor-
mation from the stack: the address in Rgyack M , is used to~access the infor-
mation, and then incremented to point to the next element on the stack. Both the
push action and the pop action leave the address pointing at the value on the top
of the stack, as expected.

Thus far we have identified direct and indirect addressing, with and without
registers, and the idea of autoincrementing (autodecrementing) a value being used
as an address. Before we look at some real machines to see in what way these
mechanisms are specified and used, three other addressing schemes need to be
mentioned.

One mechanism that can be used to access information which is known
when a program is crested is instruction stream addressing. This mechanism uses
the PC to identify data and addresses in the same manner that instructions are
identified. As an instruction executes, the information is retrieved from the
instruction stream, the location of which is identified by the PC. This method is
sometimes called the immediate mode, since data and addresses are "'immedi-
ately" available for use. In this way, constants (or predetermined addresses) can
be included in the instruction stream.

Another method has several names, but we will cal it register relative
addressing. The basicideais that a location in main store is specified by identify-
ing an offset from a valuein a register. Thus, the effective addressof the location
will be obtained by adding the two values:

Effective address= Address in register + Offset amount

A common use of this type of addressing is to identify locationsin a program
relative to the current pogtion of the program counter. This is often called PC
relative addressing, and is used extensively for identifying the destinations of
branches or jumps in programs. The offset amount is generaly included in the
instruction itself.

Another use of register relative addressing is to locate information based on
the mode of execution of the program combined with the instruction. Some sys-
tems have registers that are given specific operating system responsibilities, and
references to information are automatically made relative to these registers. An
example of this is the 80X86 series of processors made by Intel, which contain
four segment registers. The addresses in these registers identify the location in

Chap. 4: InstructionSet Processing

main store of data, program, stack, and extra segments. Thus, any access to
memory is automatically made relative to the appropriatesegment register.

Finally, another mechanism for addressing information is indexing. Here,
the address of the desired information is the sum of at least two vaues. One of
these values is considered the base value, and can be supplied by the instruction
stream or be stored in a register. The second value is usudly in a general purpose
register. The sum of these two values provides the effective address of the
desired location. Thus the base value is " indexed by the vaue in the register.
One example of the use of this mechanism is to provide the base address of an
array in the instruction stream, and then to identify the desired element of the
array by a value in a register. Indexed references provide an effective way to
referencestructured data.

It is helpful to visuaize the relationshipof the various components making
up the various addressing modes. A visual summary of the addressing mechan-
isms described above is shown in Figure 4.15. Additional addressing mechanisms
can be constructed by combining the different basic mechanisms to extend the
total number of possibilities. We will use many of these addressing mechanisms
in examples throughout the text, and a summary of the nomenclature used in the
assembly language level examplesisincluded in Table4.1.

~ These basic methods are combined in a variety of ways to accomplish the
task of identifyingin main store a desired location. One of the remaining tasks,
which we have not yet discussed, is representing these different choices in a
manner that they will be acted upon in a reasonable fashion by the CPU. We
know from Chapter 2 that with N bits we can represent 2V different entities. The
problem is to use N bits to specify the operation code (op code) or instruction to
perform, the register(s) needed for operand identification, if any, and the appropri-
ate addressing mode. Let us consider two examples of how this has been accom-
plished by system architects in real machines. First, we will look at some of the
mechanisms used by DEC, then the N$32032 processor.

Example 4.6: Encoding d addressing modes: The PDP 11 series of comput-
ers utilizes a number of different addressing schemes to identify locations.
How are the single and double operand instructionsencoded?

The PDP 11 has been one of the most popular 16-bit computers ever
built. One of the features of the FDP 11 instruction encoding schemeiis that
all of the op codes for the instructionsfit into 16-bit words, with whatever
additiona information (addresses, for exampl€e) needed occupyingadditional
16-bit words. To accomplish this, different formats are utilized for those
16-bit instructions. The two of interest to us are those used for single
address and double address functions, the formats o which are shown in
Figure 4.16. The PDP I1 utilizeseight general purpose registers, which are
numbered from 0 to 7. Register 7 is also the program counter, and there are
some special modifications to the addressing mechanisms when this register
is specified. To identify one of the eight registersrequires 3 hits, and loca-
tionsfor these bits are reserved in both representations. An additional 3 bits
are used to specify how the register is to be used. Note that usng both
register and mode bits for the two address format leaves only 4 bits for
identification of the instruction. These 4 bits are coded as shown in Table
42.

As can be seen from the table, certain patterns in the 4 most
significant bits (MSB) expand to consume the bits used for the source

Chap. 4 instruction Set Processing 153

Reglsh Instruction Memory
& lﬁ
PG
Direct, Addressing:

Instruction Identifies
Location of Data in Memory

Instruction Memory
Reglster Direct Addressing:
Instruction ldentifies
Location of Data in Register
Regist Instruction Memory
= {
PG

Stack Addressinﬁ:
Stack Pointer \denlfies
Location of Data in Memory

Data:
Address: ESZA

Memory
Registers Instruction
P
[Siack |

Indirect Addressing:
Instruction Identifies
Location of Address of
Data in Memory

Memory

4 Instruction
C

/

PC_

Reglster Indirect Addressing:
Instruction identifies Register
which has Address of Data
in Memory

Registers 1 Instruction

Memory

Qtark

Instruction Stream Addressing:

Register Indirect from PC

Figure 415. Addressing Mechanisms for Accessing Information in Main Store

register (Rg) mode and register identification bits. This allows a few pat-
terns in the MSBs to be utilized to represent many different single address
and program control instructions. The bits used to specify the addressing

mechanismare coded as shown in Table 4.3.

154 Chap. 4: instruction Set Processing

Memory

Registers Instruction Registers Instruction -
L]
PC
PC Relative Addressing: Register Relative
PC Is Added to Offse Addressing: Offset in
to Identify Location in Register is Added to Another
Memory | I Reqister to Identify Location
in by
Memoi Memo!
Registors Instruction Yy Registers Instruction i
L Slack |
Indexed Addressing:
Muttiple Registers Base Addressis
Involved in a Register Indexed by
Relative Address Value in Ragister
Specification

Figure 415. (cont) Addressing Mechanisms for Accessing Information in Main Store.

The addressing mechanisms detailed in Table 43 indicate one
approach to operand addressing, an approach that can be extended or
modified to meet the needs of a system. The instruction set architecture, as
well as the structure of the machine, will reflect the intended use of the

Single Operand Instruction Format

Direct or indirect Addressing
Register Mode ———7— l
Op Code |] Rg
15 12 11 9 8 6 5 4 3 2 0

Double Operand Instruction Format
Direct Deferred Bit ———1—————|
Register Mode T T T3 l
Op Code | [Ry] [Ry]
15 21" 9 8 6 5 4 3 2 0

Figure 416. PDP 11 InstructionFormats for Single and
Double Operand Instructions.

Chap. 4: Instruction Set Processing 185

Table41l Addressng Modesad ther Nomendatures

Addressing Represented
Mode By Comment

Direct @<address> Addressis pat o instruction.

Register Rn Opaand in found in register.

Direct

Indirect *(<address>) Addressis part o instruction; operand is located
in memary a that address.

Regiser *Rn Addressfound in register; operand in memory a

Indirect thet address

Instruction #<value> Vdue is stored in instruction stream.

Stream

Register *Rn+ Regiger usd as address; vaue in register incre-

Indirect mented & end of instruction.

Autoincrement

Sack Push Stack pointer indentifies location in main store

Addressing Pop for trandfers; vaue in stack pointer adjusted as
necessay.

FC Reldive $<offset> Offst identifies target address rdative to current
location identified by program counter.

Memory- (<address> i Rm) | Operand islocated in memory & address which

Basd isam d <address>and Rm.

Index

Register- (Rni Rm) Opeaadislocated in memory & address which

Basd isamd Rnand Rm.

Index

system and the relative importance of system resources. the number of
registers, the amount of memory, and the times required for arithmetic,
register, and memory interaction. The register direct addressing referred to
in Table 4.3 is as we expect: the operand is located in the specified register.
And the register indirect uses the specified register as an address pointing to
the desired location. The register indirect autoincrement is as described
above, the value in the register being used as an address and incremented as
part of the instruction. Mode 3 is a multiple use of indirection, with the
register being incremented after use; that is, the value in the specified regis-
ter is used as an address and then incremented. But the address extracted
from the register points not to the operand, but rather to the address of the
operand. DEC refers to this additional level of indirection as "' deferred”
addressing. The same thing happens on the autodecrement and two level
indirect with autodecrement. The decrementing of the register value is done
first, and then the address used, in the first case as the address of the
operand, and in the second case as the address of the address of the operand.

Chap.4: Instruction Set Processing

Table 42. Encoding of Instructions for the PDP [t

Architecture.
Op Code Function Performed
0000 Sngeaddressand specia function instructions
0001 Moveindruction
0010 Compareindruction
0011 Bittes indruction
0100 Bitclearingruction
0101 Bitsetingruction
0110 ADDingdruction
0111 Sngeaddressingructions
1000 Sngleaddressand specid functioninstructions
1001 Moveingruction(byte)
1010 Compareinstruction(byte)
1011 Bittetingruction(byte)
1100 Bit clear instruction (byte)
1101 Bitsaingruction (byte)
1110 Subtractingtruction
1111 Specid purposeinstructions

Table43. Encodingof Addressng Information
in the PDP 11 Architecture.

Addressing modesfor PDP 1! operands

Addr bits Addressing mode
0 00 Regderdirect
0 01 Regderindirect
0 1 0 Regiger indirect — autoincrement
0 1 1 Twoleve indirect. autoincrementregister
1 0 0 Regiger indirect — autodecrement
1 01 Twoleve indirect, autodecrement register
1 10 Indexed
1 11 Indexedindirect

Addressing modes when PC is target register

Addr bits Addressing mode
) 10 Immediate mode
0 11 PCabsolute mode
1 1 0 PCreatve
1 11 pcCrdative indirect

The index mode uses the specified register as an index, and a value
from the instruction stream as the base. This information is coded as fol-
lows:

Firg word — Instruction
Second word ~ Base address

The address of the operand is the sum of the base address and the amount in
the register. For the indexed indirect mode, the address resulting from the
sum points not to the operand, but to the address of the operand.

Chap. 4: Instruction Set Processing 157

Finally, the PC specific addressing modes all require a second value in
the instruction stream. The first value is the instruction that identifies the
appropriate PC addressing mode. The immediate mode is used to supply an
operand directly from the instruction stream:

First word — Ingtruction
Second word — | Operand
The PC absolute mode is used to specify an address directly in the instruc-
tion stream:
First word — Instruction
Second word — Address

The PC relative mode is also coded as above, but the address is relative to
the PC (actual address is sum of PC and supplied address). The PC relative,
indirect mode uses the same mechanism to identify the address of an
operand, rather than the operand itself.

When DEC expanded on the ideas and concepts of the PDP 11 to create the
VAXIil architecture, the capabilities of the address mechanism were also
expanded. However, the same basic elements are utilized: direct and indirect
addressing, indexing, and relative addresses. The number of registers was
expanded to 16, and the bits identifying the different addressing modes expanded
to 4, so specifying an address required 8 bits. The number of instructions has also
been expanded, so that the list includes not only one and two address instructions,
but three address instructions as well.

Example 4.7: Expanding op codes: The advances in semiconductor technol-
ogy have alowed microprocessors to become more and more powerful.
One of the 32-bit microprocessors is the N$32032, by National Semiconduc-
tor. Although the instruction set does not include three address instructions,
it does have some interesting capabilities in the addressing mechanisms.
How are the one and two address instructions encoded?

Some of the addressing formats for the N§32032 are shown in Figure
4.17. The processor has several different addressing modes, but the ones
that concern us are one and two address formats. An interesting feature of
the instruction set is that many of the instructions which are usually associ-
ated with a single address are two address instructions for the 32032. The
single address instructions are used for functions like JUMP and JSR. The
target location is identified by the use of the five address specifier bits.
These alow 32 different addressing combinations, some of which use the
eight general purpose registers in the processor. Included in the mechan-
isms are register direct, register relative, register indirect, two level indirect,
immediate, absolute, stack, and indexed references. When a displacement or
other constant is needed (constant for immediate values. addresses for
memory locations), this value directly follows the instruction bits in the
instruction stream. The size of an immediate value is determined by the
instruction (byte, word, longword). However, an address displacement is
composed of 1, 2, or 4 bytes. as shown in Figure 4.17. This allows storing
in the instruction stream only the bits needed to identify the target address.

Chap. 4: instruction Set Processing

Single s 11 10 7 & 210

Address [R Tid 1I1I1l<|,1] I‘I

Format Address Op Code Oper

Specifier Type

Double 15 SRS LN 16 o

Address [prrrrprripTg

Format 1 Address Address Op Code Oper

Specilier Specifier Type
1 2

23 19 18 14 13 10 98 7 0

ll T IIII 1 I[ITI I I [_I1l°ro!1s1l1lo
Address Address Op Code g})per
Sp%(-:ifier Spezcifier ype

Double Address Format 2

7 6 0
One Byte Displacement; Range: -64t063 {o] Displacement |

765 0
Two Byte Displacment; Range: -8192 to 8191 [1'0|MSB Displacement
LSB Displacement

76 5 0
Four Byte Displacement; Range: [1T1]MSB Displacement)
as an Address: Entire Address Space;

as a vaue +- 2291

LSB Displacement

Figure4.17. Ns32032 Formasfor Singleand Double Operand Ingtructions.

As mentioned above, the two address'format is used not only for adds
and subtracts, but also for instructions traditionaly considered single
addressinstructions. Thus, the negate instruction extracts a value from one
location, forms the negative value by subtracting it from zero, and then
places the result, not back in the original location, but rather in a location
identified by the destination address. Figure 4.17 includes two of the two
address formats; the more often used instructions make use of the shorter
format. These include add, subtract, compare, move, and others. The
longer formats are used by instructions that do not occur as often, such as
divide, test bit, shift, and absolute value. In the two address formats, all of
the addressing modes are possible, allowing location of operands in both
registersand memory.

The 32032 ingtruction set is a good example of the concept of the expanding
op code. That is, the bits required to specify interaction expand to provide the
necessary information. The shortest instructions occupy a single byte; more com-
plex instructionscan consume 3 bytes in instruction specification, then more bytes
for index, address, and constant specifications.

Chap. 4: Instruction Set Processing 159

4.5.

Both the PDP 11 and the N$32032 provide examples of one and two address
instruction sets, as well as providing red examples of a variety of addressing
modes. The specification of a target address, whether for operand identification or
for program control, can utilize a combination of the basic modes, as we have
seen. The decisions involved in selecting the modes to include in an instruction
set reflect the design philosophy of the system architects. The basis for those
decisions is formed by the intended application, the resources available (time,
power, chip area, etc.), and the targeted system goas. Before we examine some
d those issues let uslook a another approach: machinesthat use instructionswith
no addressspecification.

Zero Address Machines: the Use of Stacks

A stack is a last-in, first-out storage mechanism, where information is stacked up
much like pieces of paper. The stack mechanismsdescribed in the previous sec-
tion are built in main store with appropriate instructions. However, it is also pos-
sible to do arithmetic with stacked vaues: an arithmetic operation is specified, and
any needed operands are extracted from the stack. The result of the arithmetic
operationis then placed on top of the stack. Because the operands are assumed to
te located on the stack, no addresses are needed in the instruction to identify
operand location. Hence, this typeof system s called a zero address machine.

In addition to the arithmetic or logic instructions that actually cause work to
occur, additiond instructionsare needed to push information onto the stack, and
then to pop it off the stack when the arithmetic is finished. The operation of a
stack system to do work is demonstrated by a simple example.

Example 4.8: Arithmetic with a stack: Consider the expression
F=A+(BxC+ DX(E/F))
Giveaset of stack-orientedinstructions that will cal culate the expression.
This could be done in several ways, we will mention two. These are

listed below, assuming that the machine can perform push, pop, add, divide,
and multiply operations.

PUSH A PUSH E
PUSH B PUSH F
PUSH C DIV
MULT PUSH D
PUSH D MULT
PUSH E PUSH B
PUSH F PUSH C
DIV MULT
MULT ADD
ADD PUSH A
ADD ADD
POP F POP F

Notice that the only instructionsthat require addressesare the push and pop
instructions. All of the other instructions merely indicate the action to take
place. In fact, some stack systems use push and pop instructionsthat do not
require addresses, but rather use the value located on the top of the stack as

Chap. 4: Instruction Set Processing

the address of the target location of the instruction. The ADD instruction.
for example, pops two values off of the stack and places on the top of the
stack the sum of the two values. Another thing that needs to be pointed out
is the depth of the stack. The major difference between the two solutions
above is that the stack depth of the first solution (the maximum number of
items on the stack) is 5, whereas the stack depth of the second solution is 3.
The depth of the stack will have a direct impact on the speed of execution,
depending on the implementation of the hardware.

Another thing that needs to be pointed out is that the instructions here
will be best implemented if they are of variable length. Note that the push
and pop instructions will need to be long enough to include the appropriate
address bits, but the arithmetic instructions can be very short, since only
action specification is required.

The use of a stack for implementing a variety of functions is very attractive
in certain circumstances. The most obvious drawback is that the time required
can be great because of moving data to and from the stack, especially since the
stacks we have mentioned to this point have been constructed in main store. One
solution to this is to construct a special hardware module that places the top ele-
ments of the stack in hardware registers. A block diagram of such a module is
shown in Figure 4.18. The figure shows four hardware registers forming the top
of the stack. Information to be placed on top of the stack (by instructions) comes
from the memory. and information popped off of the stack flows to the memory
through the memory interface. This module has the responsibility for maintaining
the stack pointer and the transfer of information from the appropriate hardware
register to/from memory. Organization of a hardware stack control system is an
attempt to minimize the interaction with memory, since stack depths of up to four
(for the system shown in Figure 4.18) needn't require interaction with memory
(except as called for by the instructions being executed). The ALU is shown
receiving input from the top two registers. This arrangement alows the ALU to
perform needed arithmetic and place the result back on top of the stack, al in a
single clock period. The stack control circuitry is then responsible for handling
the flow of information within the stack, and between the hardware registers and
the memory.

Memory

Memory -
Interface TOS Register

and 1
Stack

Stack

ointer, | Register
Address
ALU, —————————
etc)

Figure 418. Block Diagram for a Hardware-Oriented Stack System.

Chap. 4: Instruction Set Processing 161

4.6.

The use of a stack system within a machine organization allows for some
very useful capabilities. Stacks can be effectively utilized for some arithmetic
capabilities and also for specific algorithms, such as optimization algorithms in
compilers and other software systems. Another example of effective stack usage
is parameter passing between routines, since operands needed for a subroutine
can be placed on the stack, and then the subroutine is called. The code of the
subroutine knows that the operands are located on the stack, so it performs the
needed operations and places the results on the stack before returning control to
the calling program.

However, there are some drawbacks to the use of the stack, such as saving
results for further use. For example, consider the following expression:

A=BX{C+D+E)~Fx(C+D)

TheC + D portion of this statement can be used twice, and in a register machine
this would be straightforward to accomplish. The method of doing this on a stack
machine is not so obvious, since only items on the top of the stack can be used
for calculations. However, this type of operation is very prevaent in most calcu-
lations that a machine will perform. Another operation used extensively in com-
putations involvesstructured data (arrays, queues, et~.).A calculation like

ARRAY_1[1]=ARRAY_2[J]+ ARRAY_3[J +1]

which involves referencesinto severd arrays and address on array subscripts, is
handled very naturaly on a register machine with the various addressing modes
already discussed. These manipulations are not easily accomplished on a pure
stack machine. Because of the need to access information in situations such as
this, most practical stack machines include capabilities not available in a pure
stack machine. These include additional registers for addressing, such as index
registers, as well as operand referencing with respect to the top of the stack. The
ability to reference information held in the stack (but not at the top of the stack)
adds capabilities that can be effectively utilized by a computer system. These
various capabilities can alow stack machines to be used for many typesof com-
putetions.

Program Control Instructions

The instructions dealt with thus far are instructions required to do work in
machines, where work is defined as arithmetic or logic operations. These con-
cepts will also apply to operations that are often not considered as part of the
"computing" realm, such as editing or control processing. However, thisis not a
broad enough definition to cover al of the types of operationsthat of a machine.
Calculation of values covers only one type of operation that computers must pro-
vide. In addition to computing, a machine must be able to make decisions,
transfer information, and control devices. The instructions oriented toward
input/output operations (I/0) will be dealt with in a later section; we now turn our
attention to instructions used to control the program flow.

The area of program flow instructions can be divided into two genera
groups:. instructions that change the flow of the program without side effects, and
instructionsthat modify the program counter and also cause additional operations
to occur. Examples of the first type of instruction are conditional and uncondi-

Chop. 4: Instruction Set Processing

tional branches, while the second type of instruction is exemplified by a subrou-
tinecall.

The simplest instructions to dedl with are those that change the program
flow without any side effects. As we have indicated by the RTL representationsof
instruction execution, the assumed address for the next instruction to execute
identifiesthe location immediately following the current instruction. That is, nor-
ma program behavior calls for the program counter to be incremented from one
instruction to the next. When the next instruction to executeis not the next one in
the memory, then the program counter must be modified accordingly. The pro-
gram counter must be changed to identify to the appropriate instruction to be
fetched. We will follow the terminology used by many manufacturers that a pro-
gram counter change that uses direct addressing mechanismsis called a jump, and
a program counter change that identifies its target address as an offset from the
current location (PC relative) is a branch.

The jump/branch instruction is very straightforward: the target address is
identified, and the program counter is changed accordingly. The target address
can be specified by combinationsof the various addressing modes that we have
dready identified. The system operation changes somewhat when the branch is
made conditional. In this situation, the contentsof the PC at the completion of the
branch ingtruction is dependent upon some system status condition or on some
comparison identified by the instruction. The conditions may include the status
bits contained within the status register of the machine; some arithmetic possibili-
ties were identified in Sections 32 and 37. Other conditions found in status
registersreflect the status, not of the arithmetic operations, but rather of the entire
system. These include such information as interrupt information, errors and traps
that have occurred, semaphores used in synchronizing system resources, and any
other informationthat details the state of the system.

In the definition of the system architecture, the designers of the system must
determine the information to be included in the status register, as well as the pos-
sible conditionsthat will be testable with the instructionsdefined in the instruction
set. Two different examples of the approaches that can be taken are availablein
the VAX architecture(from Digital Equipment Corporation),and the MIPS archi-
tecture (from MPS Computer Systems). Both systems include a 32-bit system
status word; however, the information contained within the status word is dif-
ferent for both systems. The VAX status word contains bits that reflect arithmetic
conditions, while the status register of the MIPS system does not contain results of
arithmetic operations. The VAX system, which is an architecture based on acom-
plex instruction set philosophy, has over 35 instructions to test various combina
tions of bitsin the status register. The MIPS system, on the other hand, has eight
conditional branch instructions, two of which compare two general purpose regis-
ters (equal, not equal), and the rest of which check conditionsof a single register
(equal to zero, not equal to zero, positive, etc.). The MIPS system is an example
of the reduced instruction set approach to machine design, which we will discuss
in Section4.8.

Regardlessof the type of instruction set architecturechosen for a particular
system, if the proper conditions are satisfied, the PC contents are modified to
allow the program to continue a an address identified by the instruction. If the
conditions are not satisfied for modifying the program flow, then the program
counter is incremented in the normal fashion and execution of the program contin-
ues with the next instruction in the normal order of execution. These program
counter modification mechanisms are demonstrated by the following example.

Chap. 4: Instruction Set Processing 163

Example 4.9: Jump and branch instructions in a PDP /! type architecture:
In the PDP 11 architecture, jumps can use any of the appropriate addressing
modes to identify the target address. Assuming that the target address is
included in the instruction stream, give the RTL for a jump instruction.
Also, give the RTL for an instruction that branches if the carry is set. The
branch instruction on the PDP 11 encodes the target address as an offset
from the PC, and 8 bits are included in the instruction to specify the offset.
Since PDP 11 instructions must be on even word boundaries, the offset is
multiplied by two beforeit is added to the PC.

The jump instruction required by the example must retrieve the target
address from the ingtruction stream and move it to the PC. This can be
accomplished as follows:

fetch: Go get the instruction
FC - MAR Addressd instructionto MAR.
PC+2 - PC Bump PC to point to address.
M[MAR] - MBR Rerieveindruction.

MBR — IR And move to IR.
decode Control systemfigures out what to do
execute: And begins the proper action:

PC -» MAR Go get the target address.
M[MAR] — MBR And putin MBR.
MBR — PC Thisis actud modificationof PC.

As seen by the RTL, this is a very simple instruction, and because of its sim-
plicity it can be done relatively fast. Nevertheless, time is required for each
of the steps. For the instruction mechanism shown in the example, two
memory fetches are required, one for the instruction and one for the address.
For that reason, the branch instruction is often a desirable alternative, since
the target address is identified with respect to the PC, and the offset is
included in the instruction. Consider the RTL for the instruction that
branchesif the carry is set:

fetch:
PC —» MAR Addressof branch instruction to MAR.
M[MAR] - MBR Retrieve indruction.
MBR = IR And move to IR.
decode
execute:
if (carry == 1) { Check the condition: if satisfied, then.. . .
FC+(2XIR<7:0>) = PC Next ingtruction is a target address.
} e { Also, IR < 7:0> is Sgn extended to 16 hits.

PCt+2 = PC Change PC address if condition not true.
}

To perform the work of the instruction it is necessary to be able to selective
execute the appropriate transfers. That is, the control section sets the PC to
PC + 2 or to PC + offset depending on the appropriate condition, which in
this case is the contents of the carry bit. The manner in which the arith-
metic is done will be system-dependent; however, the logic required to
increment the program counter will be available to be utilized as needed.
See Figure 4.10 for an example of a system where a separate adder is used
to add the appropriate length to the PC. Including a multiplexer to select

Chap. 4 Instruction Set Processing

either the instruction length of the offset, based on the selected condition,
would permit the necessary decision to be made.

As the above example indicates, the instructions that modify the program
counter do so in a manner that reflects the capabilities of the machine and the
instruction set. The target address is identified, by whatever combinations of
addressing modes are available, and the specified address is placed in the program
counter. In the case of conditional execution, the necessary condition is tested,
and then the appropriate action is taken. We have indicated a simple choice,
where the program counter goes to the next instruction or to a different target
address. However, more complicated mechanismscan be set up in a system. For
example, one minicomputer used a three-way branch for its arithmetic tests: three
target addressesfollowed an arithmetic conditional branch instruction. A different
target address was used for the greater than, equal to, and less than arithmetic
cendations.

The above example aso containsan anomaly when compared to other RTL
descriptionsof instructionsincluded in this chapter. The fetch portion of the con-
ditional branch did not include incrernenting the program counter to point to the
next instruction. Historically, the modification of the program counter to identify
the location of the next instruction has been done in the fetch portion of the
ingtruction. For example, many 16-bit computers configure all instructions to
occupy one 16-bit word. Then, in the fetch portion of an instruction the program
counter is incremented by two bytes. If the instruction needs an immediate value
or an addressiin its execution, the RC then points to this value, and the execution
portion of the instruction will obtain this value and increment the PC accordingly.
Thus, by the end of the instructionexecution, the PC does indeed point to the next
instruction to execute.

The conditional mechanisms provided in instruction sets reflect the intended
use of the systems. For example, some instruction sets will contain a dedicated
CASE instruction (see the NS32000 system) that facilitates decisions requiring a
multiway branch capability. Other systems will use combinationsof instructions
to perform this function. Another exampleis the use of a special LOOP instruc-
tion, such as used in the 180X86 system, to simplify implementation of loops.
This instruction decrements a register and branches to a target address unless the
result of the decrement is zero.

In the definition of a computer system, the system architect must decide the
mechanism for PC relative references, and then maintain consistency in the appli-
cation of the methods to all instructions. One of the most natural mechanismsis
to identify the offset from the address of the instruction itself for all PC relative
references, both references for additiona values obtained from the instruction
stream and references for other locations with an address that is specified with
respect to the PC. One mechanism used to implement this technique (address
specificationfrom instruction address) is to delay updating tht PC until the end of
the instruction. Otherwise, some other method must be utilized to adjust the
references made during instruction execution to account for the continued incre-
menting of the PC. A different approach is to make al PC-relative references
made with respect to the contentsof the PC as it adjustsitsdlf during the execution
of the instruction. The two approaches result in different hardware requirements,
with a corresponding difference in programming techniques. Whatever mechan-
ism is selected, the resourcesof the system (address adders, registers, data paths,
etc.) must be used in a reasonabl efashion to obtain the desired resullts.

While the PC modification instructions are relatively simple, the extension
of the ideas to linkage instructions brings additional complications. The basic

Chap. 4: Instruction Set Processing 165

requirement is that the program flow is changed in such a way that control
transfers to another routine, a subroutine, in such a way that program flow can
return to the point of departure having accomplished some useful function. The
machine then executes the code that follows the subroutine cal. The method of
accomplishing the subroutine linkage can be very simple or quite complicated.
To transfer control in a reasonable fashion, we must create a mechanism that will
cause the program counter to change so that instructions are fetched from the sub-
routine. At the same time, the linkage mechanism must provide a way to retum
to the calling routine. There are a number of methods which are used to provide
this facility; we will describe three.

One subroutine calling sequence used by a few machines in the mid-1960s
is to have the subroutine itself remember from which address it was called. The
PDP 8, a 12-hit machine, used the first location of the subroutine to store the
return address. The action would then proceed somewhat like:

fetch:
PC — MAR Start instruction.
PC+1 = PC Bump PC to point & next ingtruction.
M[MAR] — MBR Get ingruction from memory.
MBR — IR And transfer to IR.
decode
execute:
IR — MAR This assumes address contained in ingtruction.
PC - M[MAR] Put return addressin first location of subroutine.
IR = PC Now put same addressin PC.
PC+ | — PC And bump it to point to next location, which is

actualy the first ingtruction of the subroutine.

At the completion of the transfers outlined above, program execution proceeds in
the new routine. The address required to retum to the original (calling) code has
been stored in memory with the subroutine. The return from this subroutine
mechanism is accomplished with an indirect jump. That is, the target of the jump
i's the address stored at the beginning of the subroutine. The last instruction of the
subroutine identifies the first location of the subroutine, fetches the address stored
there, and jumps to that address. The RTL for this action would be:

fetch:
PC - MAR Ge theingtruction.
PC+1 - PC Bump PC; this vdue nat actudly used.
M[MAR] - MBR Get indruction (which is ajump) from memory.
MBR — IR And transfer to Ir.
decode
execute:
IR = MAR Thisassumes address contained in instruction.
Address identifies fird location of subroutine.
M[MAR] = MAR Ge return address from first location of subroutine.
M[MAR] = PC Which is actually address to return to; put in PC
and program continues a ingruction after subroutinecall.

This type of subroutine linkage does indeed work, but it has some inherent
problems. One problem is the implementation of reentrant code, or subroutines
with recursion. Since the return address is stored in a specific location in
memory, only one calling routine can utilize the subroutine at any one time.

Chap. 4: Instruction Set Processing

Thus, a system with more than one user (such as a time-sharing system) would be
unable to share code between users. Likewise, a subroutine could not cal itself,
since in the process of doing so the return address to the origina call would be
destroyed. Ancther problem encountered with this mechanism is that the tech-
nique does not work in systems that store the programs in read only memory
(ROM). And since microprocessors make extensive use of ROM for storing pro-
grams this method is particularly unattractivefor those systems,

A second type of subroutinelinkage involves storing the return address in a
general purpose register. Instead of copying the updated program counter (which
identifies the instruction after the subroutine call) to a location in memory, it is
saved in a genera purpose register. This solves the memory and reentrant prob-
lems, but not the recursion problem. It does provide a more rapid linkage
mechanism. That is, since references to memory are not required to store and
retrieve the address, the time required for hoth the call and the return will be pro-
portionately less. This is the mechanism used by the Texas Instruments 9900
architecture, where the branch and link instruction (BL) places the return address
into general register 11. A similar mechanism is used by some instructionsin the
IBM 370 system.

Perhaps the most extensively utilized method for subroutine linkage is the
use of a subroutinestack. Systemsthat use this method will have a register desig-
nated as the stack pointer, which will control a stack in the memory of the
machine. A subroutine call will push the return address onto this stack. The
return reverses the process, popping the address from the stack to the program
counter. This method is very attractivefrom several aspects, since it provides a
solution to the problems identified earlier. The stack is built in memory, which
need not be shared with the program, so the program can be in ROM while the
stack is in RAM. When multiple users are executing programson a single com-
puter, then each user will have a private stack space and can share a single copy
of the code. Since each call to a routine will push a new return addressonto the
stack, recursive routines can be utilized as wel. For these reasons, the stack
method for establishing subroutinelinkage is used by many systems.

Example 4.10: Subroutine linkage: The 68020 ingtruction set architecture
has eight data registers (D, —D;) and eight 'address registers (A — A7), to
which users have access, one of which (A,) is considered the stack pointer.
In addition, there is a program counter. Give an appropriate RTL for the
JR (jump subroutine) instruction, assuming an address register indirect,
relative addressing mode to identify the location of the subroutine. Also
givean RTL for the RTS (return from subroutine) instruction.

This subroutine linkage instruction mechanism is very straightforward.
Note that the following RTL is not necessarily accurate if the 68020 is con-
sidered in detail, since that processor has a pipelined implementation that
increases the complexity of the system. However, as far as the user is con-
cerned, the action of the IR instruction can be considered as shown in the
RTL included in Figure4.19.

Notice that since the 68000 series processors utilize a stack that grows
down in memory, the adjusting of the stack pointer to put information on
the stack is to decrement it; the proper value is then placed at this address.
At the end of the operation the SP is pointing at the value at the top of the
stack. The address register on the 68020 is 32 bits long, so the SP must be
decremented by 4 since the addresses of the system are byte addresses. To
pop information off of the stack, the value is first removed, then the stack

Chap. 4: Instruction Set Processing 167

RTLfor JSR (Jump to Subroutine) Instruction

fetch:
PC — MAR Start fetch of ingruction.
PC+2 — PC All 68000 ingtructionsstart with 2 bytes.
So point to next value to be fetched.
M{[MAR] — MBR Get the IR ingruction from memory.
MBR — IR And trandfer to IR.
decode This must identify addressing mode, etc.
execute:
PC - MAR Since addressing mode needs value from ingtructionstream
M[MAR] = Temp Get the value and store temporarily.
PC+2 — PC Bump FC by 2 to identify return address.
SP-4- SP Get stack pointer ready for new addition to stack.
sp - MAR Set up MAR to identify memory location for refurn address.
PC = M[MAR] And push PC, which has return address, onto stack.
Tempt Ay — PC Now put addressof subroutinein PC.
Note that A, is specified by ingtruction.
RTLfor RTS (Returnfrom Subroutine) Instruction
fetch:
PC — MAR Start fetch of the return ingtruction.
PC+2 - PC All 68000 ingtructionsstart with 2 bytes.
M[MAR] = MBR Get the RTS ingruction from memory.
MBR - IR Trandfer to IR.
decode
execute:
SP - MAR |dentify memory location where return address is stored.
M[MAR] - PC Thiswill be a4-bytetransfer.
SP+4 — SP Increment stack pointer to point & next value on stack

and the action is completed.

Figure 419, RTL Implementationsdf Subroutine Linkage for a68020 System.

pointer adjusted accordingly. One such implementation is also included in
Figure 4.19. The cal and the return, as demonstrated by the RTL of this
example, implement a very simple but effective mechanism for linking cal-
ling routines with subroutines.

The mechanisms above for providing subroutine linkage control the flow of
the instructions from one routine to another. But what has been ignored in the
above discussion is the treatment of parameters being passed to and from a sub-
routine. Several techniques are used in different circumstances, each of which has
its relative merits. Rather than discuss the implementation techniques and how
they may be used by different language systems, let us discuss some of the
instructions included in different machines to help with the problem.

The most obvious methods require no special instructions. leave the operand
in a known place, like a register, and call the subroutine. When the subroutine
has completed its work, leave the result in a known location and return to the cal-
ling routine. The complexities arise when the called routine wants to use general
resources, such as registers, but leave those resources unchanged when control is
returned to the calling routine. The subroutine can then copy the registers that it
will use, do the work, then restore the registers and return. For this reason some

Chap. 4: Instruction Set Processing

4.7.

instruction sets include specia features to simplify this process. One example is
the SAVE ingtruction of the NS32000 system, which e s Outy e sun h Copnes
of the selected registers. 1hese can then be rcatored a the proper time with a
RESTORE ingtruction that works in the reverse manner, popping values from the
stack and placing them in the registers.

Another facility is provided by the LINK facility in the 68000 instruction set.
Often when a routine is accessed, it is desirable to provide for it an area in
memory for local variables. One way to accomplish this is to use some of the
system stack for this purpose. The LINK instruction alocates space on the stack
for the routine to use as needed. This stack space can be used not only for local
variables, but also for parameter passing between the two routines. The valuesare
accessed by indexing into the stack (with the indexing mechanism provided by the
addressing modes) from the current stack pointer.

One of the more complicated mechanisms for linking routines is demon-
strated by the CALLS instruction in the VAX architecture. This ingtruction uses
the stack to pass arguments to a routine, with the assumption that the stack has
already been modified to contain those arguments. The instruciion thea needs to
know the number of argumentsand the address of the target routine. The action
of the CALLS instruction begins by pushing a number of arguments onto the
stack. The location of the routine being accessed is identified; this could involve
combinationsof the addressing mechanisms aready mentioned. The first 16 bits
of the routine being called form an entry mask, which identifies the registers to be
saved before the routine can be entered. The stack pointer (SP) is digned to a
32-bit boundary, and those registers are pushed onto the stack, as well as the pro-
gram counter (for return address), the frame pointer, and the argument pointer.
Then two 32-bit values containing status and mask informa-ion are also placed on
the stack. Finally, the new frame pointer and argument pointer are set up, and the
program counter is set to the location after the entry mask, and control passed to
that point. This mechanism performsthe work of transferring control to the new
routine and providing, via the stack, a parameter passing mechanism.

I/0, Interrupts, and Traps

The instructionsinvestigated thus far have included mechanisms for doing work
(arithmetic and logic instructions), mechanisms for passing information (moves,
etc.), and mechanisms for controlling the work (program control instructions).
One of the areas not mentioned is the transfer of information to and from external
devices. This is generally called input/output processing (1/0), but involves more
than transfer of data. Additional requirementsinclude such things as testing of
conditions and initiating action in an external device. Some of the WD program-
ming is in response to an external event signaling the processor that a device
needs to be serviced. This signaling processis called an interrupt, and the proces-
sor responds to the interrupt in a predetermined fashion. Findly, traps serve
much the same purpose as interrupts, but result from conditionsdetected internal
to the processor.

1/0 processing has evolved from the very simple capabilities of the first
machines to sophisticated mechanisms used in some machines available today. In
its simplest form, /O transfers data to or from an addressed device under the
direct control of the processor. This is caled programmed 1/0. In single address
machines, the data is moved from/to the accumulator. For example, the PDP 8
instruction set has input and output instructions that identify one of 64 devices.

Chap. 4: Instruction Set Processing 169

Having selected the appropriate device, the system can transfer information in the
ACC to the device, information from the device to the ACC, or test a condition in
the device. The conditional instruction is similar to the conditional branches
aready discussed: the order of instruction execution is modified if the proper con-
ditions are met.

This concept of having specific instructions for input and output has contin-
ued, and some microprocessors include an additional control signal to indicate
that the address appearing on the address lines is to identify an 1O device address,
rather than a memory address. However, another technique, called memory
mapped IO, is perhaps more widely utilized. With this method, 10 devices are
assigned specific locations in the address space of the processor, and any accessto
that address actually results in an /O transfer of some kind. The memory mapped
/O scheme has the advantage that no special /O instructions are required in the
instruction set, and this reduces the complexity of the instruction decode mechan-
isn. In addition, devices attached to the processor need not decode special sig-
nals to differentiate between memory and VO requests. However, the fact that 1O
ingtructions are included in an instruction set does not prevent the use of memory
mapped /O techniques in a system. The user of the system can decide which
technique would be most appropriate for the goals of that particular implementa-
tion.

We will identify specific /O functions and methodsin Chapter 6. But as far
as the instruction set architecture is concerned, the important point is that the sys-
tem be capable of transferring information to and from devices attached to the
processor. This can be data or status information, and can be used in calculations
and decisions in the same manner as other data/status information within the sys-
tem. Consider the following simple example of a transfer method.

Example 4.11: Memory mapped /0: A 16-bit computer system that uses the
memory mapped /O scheme has been configured so that the addresses
FFEO,¢ and FFEl ¢, are assigned to a simple ¥O device. The status of this
device is obtained by reading FFEQ,s. The least significant hit is set when-
ever the device is ready to accept a value, which can be written to the
address FFE1 4. The second bit is set whenever the device has data that the
processor can read. This data is obtained by reading address FFEl . Create
an appropriate code segment to move data from the array DATA_OUT to the
device, a the same time accepting data from the device and putting it in the
array DATA-IN. Assume that the operation will finish when the last value
of DATA-OUT has been transferred.

The actua code for this example would depend on the instructions in
the system, but the point here is to use the memory mapped capabilities to
do the desired work. The code must check to see what data transfers are
possible and perform them:

MOVE #length, RO Put the number of transfersin RQ
MOVE #FFEQ, RI Move the status address to a regidter.
MOVE #FFE|, R2 And the data address.

MOVE #<datain>, R3 Fill R3with addressof input area.
MOVE #<dataout>, R4 Fill R4 with addressof output area.

loop: MOVE *R1,RS The MOVE seis status bits according to value
JZERO lwp transferred; beck to loop if it's zero.
AND #1,RS If it's not zero, is the LSB set?

Chap. 4: Instruction Set Processing

JZERO output I LS not 1, mud be ready for output.

MOVE *R2, *R3+ Thisis inpul function.
BRANCH loop Now go back and chedk again.

Ooutput: MOVE *R4+, *R2 This oulputs one vaue (and inc*s address).
DECREMENT RO Now ae we done? Decrement RO, ad if the
JINZERO loop reault is nat zero, go bedk and try again.
ingtruction Otherwise, we thisis the next ingruction.

This code will cause the machineto poll the /O device until either the dev-
ice has information for the system, or the /O device can accept data from
the system. The polling is done by reading the status register of the 1O
device, which is available & address FFEQ,,, When the status register indi-
cates that transfers can occur, they are performed by writing/reading the
appropriate memory location.

The above example identifies one method by which information can be
transferred between a processor and a peripheral device. However, the polling
mechanism demonstrated by the code is extremely inefficient in many cir-
cumstances. For example, if the processor issued a command to a tape drive to
seek a particular file on a tape, a very long time will pass between issuing the
request and having the device respond with the desired results. With the polling
technique, the capabilities of the system are not available for anything else during
the seek time. Therefore, it is more efficient to have the 170 device send a signal
to the system when the action of a command (in this case the seek action) has
been completed. This signal is an interrupt, and it signals the processor to inter-
rupt its current action and do something. What the system should do when it
responds to an interrupt is defined in a routine called an interrupt service routine.
The behavior of the system when responding to an interrupt is identical in many
respects with the action of calling a subroutine. Thus, the instructions dealing
with interrupts mimic the instructionsinvolved in subroutine linkage.

One of the mogt basic requirementsof the system with respect to the inter-
rupt facility is the ability to enable or disable interrupts. This action is provided
in some systems by including two specific instructions. one to turn on the inter-
rupt facility, and one to turn it off. This function can aso be handled by a bit
(often called the interrupt enable hit) in the status/control register of the system.
This bit isset and cleared by the logic instructions of the system.

If the interrupt capability of the system is enabled, the interrupt facility is
checked at the end of each instruction. If an interrupt is pending, the appropriate
action is taken. If the conditionsare such that the interrupt should be recognized,
then the system responds by causing execution of the interrupt sequence. If the
interrupt conditions are not met, then the request is ignored. The "conditions”
range from the simple to the complex. In some extremely simple systems, all
interrupting devices activate the same control line, so thereis no way of differen-
tiating (in hardware) what caused the interrupt. Hence, any interrupt will cause
the interrupt sequence to be initiated. Another method is to group interrupting
devices into levels, and to prevent interrupts below a specified level from being
recognized. A system with this ability may prevent interrupts from devicesof a
lower priority from being handled until the action required by a higher priority
device has been completed. Another method is to individualy control the inter-
rupt ability of /O devices. Thus, before an interrupt can be recognized, both the
system level interrupt and the device level interrupt facilitiesmust be enabled.

Chap. 4: Instruction Set Processing 171

The interrupt acknowledge sequence is identified by the system architect
when the design is specified. One intermpt sequence is to do an automatic sub-
routine call with a predefined target address. The subroutine, which is the inter-
rupt handling routine, is then responsible for disabling further interrupts, saving
whatever information is needed, and then doing the work. When the interrupt ser-
vice routine has completed the action needed by the interruptingdevice, then the
system reenables the interrupt, and retums to the program where the execution
was active when the interrupt occurred.

The desired behavior isfor the interrupt action to be invisible, except for the
time required by the interrupt service routine. That is, the state of the machine
should be the same directly afier the interrupt has been serviced as it was before
the interrupt occurred. The state of the machine refersto the contentsof all of the
appropriate registers, both general purpose and specia registers. For this reason,
the information saved by the interrupt action must include all registersaltered by
the interrupt service routine. These will be restored in the process of returning to
the interrupted program. For example, when the 6800 microprocessor recognizes
an interrupt, the accumulators(there are two), the program counter, and the status
register are al pushed to the stack. The RET ingtruction restores all of these
values and continuesexecution. Other systems respond in a similar fashion, stor-
ing a sufficient amount of state information to return to norma programming at
theend of the interrupt serviceroutine.

If one addressis specified for al interrupts in the system, then the interrupt
service routine does not have a sufficient amount of information to identify which
d the possible interrupting devicesactually is requesting attention. Therefore, the
routine must poll al appropriate devices to ascertain which one needs service. A
more time-efficient mechanism is to ask the devicesto identify themselvesso that
a specific routine can be accessed. This is caled a vectored interrupt, and is
implemented in a variety of ways. One is to have an interrupting device supply
the address at which the interrupt service routine will be located. This is the
method used in UNIBUS devices. a specia interrupt acknowledge bus cycle
requests the address from the applicabledevice, and obtains from that address the
addressdo the interrupt Service routine (onelevel of indirection) and a new status
word.

A similar mechanism for vectored interrupts is used by a variety of
microprocessors. The techniquecalls for a number of interrupt levels, and to each
level is assigned a device or number of devices. Within the memory of the pro-
cessor is created a table containing the address of the interrupt service routine for
each level. An interrupt is requested by asserting the lines to indicate the
appropriate level, and the processor automaticaly extracts the corresponding
address from the table. With this technique, if several devices have the same
priority level, then the interrupt service routine must use an additional information
mechanism, such as polling, to find the device that actually requested the service.

The interrupt mechanism is very useful for handling any event that needs
service. The above discussion deals with external interrupts, such as a disk or
tape drive interacting with the processor. But the same kinds of information are
needed for exception conditions that occur during the execution of a program.
For example, if an overflow or similar arithmetic problem occurred during the
execution of a program, the system must deal with it in a reasonablefashion. One
way is to ignore it, which requires no additiona facilities. Another way is to
allow the system hardware to cause an interrupt in the same manner as a disk
drive. Thisiscalled a trap or exception, and is used for a variety of functions, as
demonstrated by the following example.

Chap. 4: Instruction Set Processing

Example 4.12: Interrupt mechanisms: The instruction set architecture for
the 68020 is given in Figure 4.20. What is the interrupt mechanism for this
device? What traps are established in the system that also use this mechan-
ism?

The figure indicates that the system can function at two levels, the
user level and the system level. The user is prevented from accessing some
of the registers of the device, whereas the system does have accessto al the
user registers and those thet have a direct impact on the system operation.
Of particular interest for this example is the trestment of the status register.
The user has access to the condition codes (extend, negative, zero, overflow,
carry), but not the other portions of the status register. The user cannot
influence the 3 bits comprising the interrupt mask. The system establishes
the interrupt level by setting the 3 bits to the desired level. At the end of
each instruction the three interrupt lines of the processor are checked to see
if they form a number that indicates a high enough priority level to request
an interrupt. If no interrupt is pending, or if the pending interrupt is not of
sufficient priority to request attention, then the next instruction is fetched
and processing continues. However, if an interrupt of sufficiently high
priority is pending, then severa things happen to begin the appropriate pro-
cessing. The status register is copied so that it can be restored when the
interrupt processing is complete. The system state is changed to supervisor
mode. The interrupt mask level is set to the level that caused the interrupt,
so that interrupt requests of the same (or lower) priority are ignored until the
current one is completed. The processor requestsa vector number from the
interrupting device; the vector number is obtained on the data bus. This
will be used to obtain the address of the interrupt service routine from the
exception vector table shown in Table 4.4. After obtaining the interrupt
number, the current processor context is saved. This is done by pushing
onto the active supervisor stack an exception stack frame, whose format is
shown in Figure 421. The figure shows the information in a 16-bit
configuration, but the processor, which is capable of 32-bit transfers, will
use the wider data transfers as much as possible to speed up the process.
The status register used is the copy of the status register made at the initia-
tion of interrupt processing. The program counter is the 32-bit address of
the next ingtruction to execute. The vector offset is the offset value (inter-
rupt number x 4) that will be used to identify the address of the interrupt
service routine. And the additional state information contains other system
registersand information. This will vary from © to 42 words, depending on
the interrupt that initiated the action. (For further details, refer to the device
specification.) Under certain circumstances, an additional exception stack
frame will be created on the interrupt stack. Findly, the address of the
interrupt service routine will be obtained by adding the offset value to the
contents of the vector base register. At that location is the address of the
intermpt service routine. Processing continuesat that location.

As can be seen from Table 4.4, addressesare maintained in the excep-
tion vector table for both user-defined interrupts and system traps. If the
floating point unit detects an underflow, for example, the interrupt sequence
for intermpt number 51 is initiated. Regardlessof the source of the inter-
rupt, when the service routine has completed the necessay processing,
control is returned to the controlling program by the RTE (Return from
exception) instruction, which pops the appropriate information off of the
stack and restores it to the appropriate registers. The format bits shown in

Chap. 4: Instruction Set Processing 173

31 16 15 87 0

D1
D2

b3 Data
D4 Registers
DS

D6

D7

3 16 15 0

A0
Al

Address
A3 Registers
A4

A5
A6

31 16 15 0
| | A7 User Stack Pointer

31 0
l] PC Program Counter

[J—__—_:f] CCR Condition Code Register

User Accessible Registers

31 16 15 0
] A7 Interrupt Stack Pointer
31 16 15 0
[| | A7* Master Stack Pointer
15 87 0
[[CCR__JSR Status Register
Interrupt Priorty Mask ————
0
[] Vector Base Register
31 20
! [| Alternate Function
[I 1 Code Registers
31 0
[| cache Control Register
| 31 0
, [| cache Address Register

Figure 4.20. Instruction S&t Architecturefor the 68020.

174 Chap. 4: Instruction Set Processing

Table 44. Exception Vector Assignments for the 68020.

Vecror Vecror Offset
Number Hex Spare | Assignment
0 000 SP Reset: initial interrupt slack pointer
1 004 SP Reset: initid program counter
2 008 SD Buserror
3 00C SD Address error
4 010 SD Illegal instruction
5 014 SD | Zero divide
6 018 SD CHK. CHK2 instruction
7 0IC SD | ccTRAPcc, TRAPcc, TRAPV instructions
8 020 SD Privilegeviolation
9 024 SD Trace
10 028 SD Line 1010 emulator
11 02C SD Line 1111 emulator
12 030 SD Unassigned, reserved
13 034 SD Coprocessor protocol violation
14 038 SD Format error
15 03C SD | Uninitialized interrupt
16-23 040-05C Unassigned, reserved
24 060 SD | Spuriousinterrupt
25 064 SD Level 1 interrupt auto vector
26 068 SD Leve 2 interrupt auto vector
27 06C SD Level 3 interrupt autc vector
28 070 SD Level 4 interrupt auto vector
29 074 SD Level 5 interrupt auto vector
30 078 SD Level 6 intecrupt auto vector
31 07C SD Level 7 interrupt auto vector
32-47 080-OBC TRAP #0-15 instruction vectors
48 oco SD FPCP Branch or set on unordered condition
49 0C4 SD FPCP Inexact result
50 0C8 SD FPCP Divide by zero
51 ocC SD | FPCP Underflow
52 ow SD FPCP Operand error
53 OD4 SD FPCP Overflow
54 OD8 SD FPCP Signaling NAN
55 obc SD | Unassigned, reserved
56 OEO SD VMU Configuration
57 OE4 SD AVMU Illegal operation
58 OE8 SD PMMU Accesslevel violation
59-63 | OECOFC | SD Unassigned, reserved
64-255 100-3FC SD User-definedvectors

15 1211 0
SP ——» Status Register

— Program Counter —

Format I Vactor Offset

F— Additionat State Information —

Figure 421. Exception Stack Frame of the 68020.

Chop.4: Instruction Set Processing

4.8.

Figure 421 will indicate to the system the number of words in the addi-
tional dtate information. and the svstem can then restore them appropriately.
An important time in determining tiic efficiency ol an wlerrupt system

is the amount of time required to recognize an interrupt and return, without
performingany work. The actual times will depend on the processor speed,
the memory speed, and the state of the cache memory. However, a ""nor-
mal"* intermpt will require four 16-bit words, or at least two 32-bit transfers
onto the stack, to save the state, then a memory transfer to obtain the
address of the interrupt service routine, and a memory transfer to obtain the
first instruction to execute. Thus, a minimum of four memory transactions
are required to initiate an interrupt service routine. A minimum of two
transfers (from the stack) is required to restore the system to functioning
order, plus one to obtain the next instruction to execute. Additional times
would be required for the other, nonmemory activitiesas well.

In this section we have seen that a processor requires the ability to commun-
icate with external devices. This can be accomplished by using dedicated 1/O
instructions or by using the memory mapped 1O technique. In either case, the
sysem hardware has the ability to transfer information to and from the external
device. Thiscan be data, or it can contain status and control information. How-
ever, for transfersinvolving large amounts of data, programmed KO techniquesare
not always applicable, and some form of automatic transfers are used. These
techniques, such as direct memory access (DMA), will be discussed in Chapter 6.
When an /0 device has completed its assigned task, it often has the ability to sig-
pa the CPU that it needs attention, and this interrupt facility allows the processor
to be doing other tasks while the YO deviceis busy.

When interrupts are recognized by the processor, the CRU will save a
sufficient amount of information to be able to return to what it was doing, and
then transfer control to an interrupt service routine. This routine identifies the
device that requested the service, and performs the necessary processing. The
identification process can be taken care of by polling, by a vector mechanism, or
by appropriate combinationsof these techniques. When the interrupt processing
is complete, the CRU can return to the original processing in much the same way
that a subroutineis performed.

RISC vs. CISC: Instruction Set Strategies

To this point in this chapter we have identified different types of instructionsand
addressing mechanisms. One of the questions that must be addressed by a system
architect concerns the number and type of instructions to be included in a specific
computer system. One strategy is to include a large number of instruction types
and addressingmodes. A system of this type is called a complex instruction set
computer (CiSC). An aternative method is to reduce the complexity of the
instruction set, and hence the reduce the logic required for the implementation of
the system, including only the instructions needed for the desired application. A
system of this type is called a reduced ingtruction set computer (RISC). In this
section, we will examine some of the issues involved in the decision process, and
some of the techniquesthat have evolved with the RISC machines.

The earliest machines were very smple in their architectureand implemen-
tation, both because experience with computing Systems was nonexistent and

Chop. 4: Instruction Set Processing

because the technology of implementation mandated a simple machine. Thus, the
language of the machine was correspondingly simple. However, users of the
Coinpuiers watied w soive relatively complex problem ., and these users described
their problems in a language that treated variables and arithmetic at a higher level
than the language of the machine. This resulted in what has become known as the
semantic gap, which is the gap between the language of the machine and the
language of the user. The languages of users (FORTRAN, Pascal, LISP, C, etc.)
became more complex to represent increasingly more complex problems. In
response to this trend, computers themselves became more complex, changing
with the available technology and user demands for speed and versdtility. The
attempt was to reduce the semantic gap by creating more complex computing sys-
tems. This would enable users of computersto more effectively utilize the com-
putetiond capabilitiesof the system.

Effective utilization of a computing system is accomplished by creating a
suitable bridge for the semantic gap. The most common bridge is a compiler,
which accepts as input a problem written in the language of a user, and creates as
output a corresponding solution in the language of the machine. Complex instruc-
tion set computers seek to reduce the difficulty of the task of the compiler by
making the instructions of the machine more closely conform to the instructions
of the higher level language. Some systems{RiSm71, Ditz81] have been created in
which ahigh level language is the native language of the processor, but thisis not
agenera practice.

Observationsof the behavior of programs executing on real machines pro-
vided some interesting insight into the operation of computers. These observa-
tionsindicated that most of the time the computer was utilizing a small subset of
all availableinstructions. Carrying this observation to the next logical step, sys
tem architects concluded that the system speed could be enhanced by including
only the often used instructions, and by making them as fast as possible. This
smplificationof the instruction set and the implementation hardware results in a
unit that can run faster. However, the more complex functionsof a programming
language must be accomplished with subroutines or with longer instruction
sequences than corresponding CISC instruction sequences. The result is that a
program may require more instructionsto completeon a RISC machine than on a
CISC machine, but the RISC instructions will, in general, have a higher execution
rate.

The RISC approach, then, is to create a system that is simpler in architecture
and faster in implementationthan aCISC machine. With the simplicity comes the
promise of speed, and with many implementationsthis promiseis redized. How-
ever, care must be taken when comparing machines based on a rate of instructions
per second, since the work accomplished by a RISC ingtruction will, in general,
not be as great as the work accomplished by aCISC instruction.

The basic issue, which is treated differently by the RISC and CISC
approaches, is one of resource utilization. How can the system resourcesbe used
most effectively? Different answers to this question are possible, based on the
relative costs associated with the resourceshy the system architect.

The tenets of RISC architecturesstrive to maximize the speed and minimize
the complexity of the implementation. Simplicity isthe basis of both the architec-
tural definition and the implementations. Some of the basic policies which are the
result of this type of an architecture are a minimal number o instructions and
addressing modes, fixed instruction formats, hardwired instruction decoding, sin-
gle cycleexecution of most ingtructions, and the use of a load/store type of organ-
ization.

Chap. 4 Instruction Set Processing 177

Minimal number of ingtructions and addressing modes. By including only
the ingtructions that are executed often, the system need not include seldom used
features. The result is a smaller, faster system, that is capable of doing more
ingtructionsin a given amount of time than a CISC machine. The CISC machine,
on the other hand, will specify more work in a single instruction. Thus, while the
CISC instruction will take longer to complete, fewer such instructionsare required
to do the work of a high level task.

Fixed ingtruction formats. By restricting the format of the instructions, the
tasksof the control system are simplified. In the fetch-decode-execute mechanism
of stored program computers, the decode function must identify the work to be
done. By causing all of theinstructionsto use the sameformat, then the decisions
required of a decoder are minimized. For more complicated instructions, such as
those of a CISC system, the decoder must firgt ascertain the length of the instruc-
tion, extract the necessary information from the instruction stream, and then
tinally specily ihie tasks necded v Co v wode WL 2 i E T ehnice gnd
a restricted location for the specification information, the speed of the system is
enhanced.

Hardwired instruction decoding This characteristic accompanies the fixed
instruction format idea, and can be useful for two different reasons. The first is
thet hardwared instruction decoding (using random logic to implement the decod-
ing function) can, in general, be done more rapidly than the altemative mechan-
isms. such as microcoding. We will discuss different alternatives for the control
system in the next chapter. Hardwired logic has traditionally been faster than
memory based techniques, such as microcode. The early machines used this tech-
nique smply because the memory technology was not sufficiently fast to be
attractive. However, the development time was longer because of the difficulty of
generating correct logic for all conditions. When small, high speed memories
became a reasonable altemative, then microcoded systems became attractive
because of their regularity and versatility. The speed ratio of data memory and
microcode memory has been steadily decreasing in recent years, so the use of
microcode for speed is not as beneficial now as it was previously, athough the
use of microcode for versatility is still attractive. Thus, to enhance the speed of
the control function, hardwired logic for instruction decode is a reasonable alter-
native. The increased use of computersas tools to aid in the design process has
made this altemative viable, since the correctness of the design can be tested
before the design is committed to hardwareor silicon.

Single cycle execution of instructions. If a computer system can be so
organized that one instruction is executed in each cycle, then by some standards
maximum utilizationof al system resources can be approached. Again, the tech-
nology plays a part in the decision process, limiting and shaping the tjpcs of
things that can be done in a cycle time. As VLSI technology evolves, functions
that once took many cycle times, such as floating point arithmetic, can now be
done in a very short time. Thus, organizing the system to take advantage of this
can be very beneficial. However, this limits some of the action of a system, since
certain types of operations cannot be accomplished in a single cycle. For exam-
ple, incrementing a vaue located in memory cannot be done in a single cycle.
since the value must be obtained from memory, then updated, and then rewritten
to memory. Hence, the instructionsincluded in the system are al restricted to
what can be accomplished in a singlecycle. SomeRISC systems deviate from this
to alow certain ingtructions to take two (or more) cycles, which permits reuse of
certain system resources, or allows for delays through logic that require more time
than allowed in asinglecycle.

Chop. 4: Instruction Set Processing

Load/store memory organization. With a load/store memory system, the
only instructions that deal with memory are those that load information into regis-
ters from memory or that store information from registers to memory. All
arithmetic/logic instructions work with values in registers. By placing the
operands of arithmeticbogic instructionsin registers, the above stated objective of
an ingtruction per cycle can be met. With this organization, the operands are
readily available, and can be extracted as needed from the registers. No time is
lost waiting for operands to be obtained from the data memory. However,
separate instructions are reguired to move the information to the registers to be
used. The RISC technique relies on the observation that in general infoimation
will be used several times before results are written to memory. The CISC tech-
nique, which does not restrict the location of the operands for the instructions,
alows either the register intensive technique or memory-to-memory operationsto
be used.

In addiiton (o the fae o hacd abave, the Kise @ clutectures rely on encciive
utilization of additional architectural techniquessuch as pipelining, multiple data
paths, and large register sets. These techniques are not strictly associated with
RISC machines, but combining the techniques with the reduced instruction set
ideas often results in a higher speed system. At this point we should hasten to
add that not all RISC systems adhere to all of the tenets listed above, and that
most availableRISC systems violate at least one of them.

The basic concepts and ideas of pipeliningare discussed in Chapter 8, so we
will not elaborate on the RISC use of pipelines here. But one of the reasons that
pipelining functions well for RISC machines is that the restricted operand place-
ment for arithmetic/logic instructions minimizes pipeline delays for operand
fetches. An operand required for execution of an instruction must be obtained by
a pipeline before the operation can continue. If these operands are aways re-
stricted to fast registers, such as in the RISC case, then the delays associated with
operand accessare minimized. If the operand is in general purpose memory, such
as in a CISC machine, then a relatively long time is required to obtain the infor-
mation, which reduces apparent system speed.

The use of multiple data paths allows a greater amount of parallelism and
concurrency to be used in the implementation of systems. Thisis evident in two
aress, as seen by the block diagram for the Motorola 88000 RISC system, shown in
Figure 4.22. The two areas identified in the figure are the multiple buses con-
tained within the 88100 processor chip and the distinct instruction and data paths
to memory.

The use of multiple buses internal to a processor allows transfer of multiple
operands in any given cycle. In particular, two source operandscan be provided
to a functional unit, and a destination opeiand from a functiona unit provided to
the register file within a single cycle. This requires buffer registers within the
functiona units to hold the values while the buses are released to be used else-
where. And the multiplicity of functional units increases the opportunities for
parallel activity within the processor itself.

Providing different paths for both the instruction and data transfers allows
those two functionsto proceed simultaneously. This is necessary if the goa of
one ingtruction per cycle is to be achieved. But by using this technique a new
instruction can be made available in each cycle, regardiess of the data transfers
needed by the system. For arithmetic instructions, the data path to memory would
not be needed. Buit for instructions that transfer information to and from memory,
both ports would be used very efficiently.

Chap. 4: Instruction Set Processing 179

MC88100
INTEGER FLOATING POINT
UNIT UNIT
SOURCE 1 BUS
SOURCE 2 BUS
DESTINATION BUS
REGISTERFILE
DATA UNIT INSTRUCTION
SEQUENCER
ADR DATA ADR DATA
DATA MAIN STORE INTERACTION INSTRUCTION
CACHE CACHE
MC88200 I MC88200

Figure 422. Matorolaggooo R SCsystem.

Like pipelining, the concept of multiple paths for informationtransfer is not
limited to use in RISC systems. However, a system that follows the RISC con-
cepts will be able to optimize the use of multiple information paths for enhanced
system speed. The sameis hue of large register sets. This technique can be used
in systems of any type. However, one of the techniquesthat has been linked with
RISC systems, and that utilizesa large register set, is the use of register windows
for parameter passing in subroutines.

By measuring the frequency of instruction execution, it has been observed
that the process of calling and returning from subroutines consumes a large
amount of processor time. In an effort to minimize this, the idea of using register
windows on a large register set has been proposed. The basic idea is that many
registers are included in the system, but that only a limited number of them are
accessible by the system at any one time. This limited number of registers is
identified as the "window" into the set of all registers. To change the window, a
pointer that identifies the active registers is modified to specify a new set of active
registers. When the windows overlap between routines, then parameters can be
passed by placing them in the registers that are accessible by both routines. In
this way, the memory transactions required for pushing parameters onto a stack,
and then popping them off, are minimized. As long as the number of parameters
is less than the register overlap, no memory transactions are required for passing
o the parameters.

This technique was utilized by the architects of the RISC | system at the
University of Californiaa Berkeley, and their use of registersis shown in Figure
4.23. Theingtruction set uses 5 hits to specify registers to be used in an instruc-
tion. Thus, 32 different locations can be accessed. The first ten registers(R0-R9)
ae global registers, and are accessed by any routine, regardiess of the number of
subroutine calls. The remaining 22 registers are broken into three groups: the

Chap.4: Instruction Set Processing

R31 \
; High
R26
A25
outine Specific Registers
Local E ch evePg?suf?ro ine
Registers call accesses different
set, yet the sets overlap
R16
R1S
Low
Registers
R10
R9
Common Registers,
Rgglfgg‘,s Qs?%eoﬁgg by dl routines
RO —

Figure4.23. Regiger U inRIsC I.

high registers, the local registers, and the low registers. The high and low groups
each contain Six registers, while the local group contains 10 registers. Together
these three groupsform a routine specificset of registers. Thus, when aroutineis
accessing register storage, it will identify a vauein either the global registersor
the routine specific registers. It is then the responsibility of the system/user to use
the registers in a coherent manner.

As mentioned above, one of the primary reasonsfor using register windows
is for parameter passing in subroutines. When returningfrom or calling a subrou-
tine, a pointer that identifies the location of the routine specific registers within
the set of all registers is modified to point to the next set of routine specific regis-
ters. This modification is an increment/decrement by 16, which causes six of the
registersto be shared between routines. With 22 registersin the routine specific
set, this causes an overlap of six registers between the two routines. Any data to
be exchanged between the two is merely left in an agreed-upon register by one
routing, and the other routine knows where to obtain the information when it is
needed.

This process of information exchangeis graphically depicted in Figure 4.24.
Only a portion of the overall register set is shown. If a program is executing
Routine A, then the 32 registers to which it has access are the global register set
(RO-R9) and the routine specific set which begins at location 90 in the register set.
The routine specific registers for Routine A are referred to as R10 to R31 by
instructions within the routine, but the system actually utilizes registersR90 to
R111. Now assume that Routine A is going to call Routine B, and that it needs to
pass two values. Routine A places the valuesin R10 and R11 (which are physi-
cally R90 and R91) and calls Routine B. The subroutinecall identifiesthe address
of Routine B; execution of the instruction changes the program counter, creates
the appropriate return linkage, and decrements by 16 the pointer identifying the

Chap. 4: Instruction Set Processing 181

32

Physical Register Numbers

Ri11

R106

R105

RO6

R95

R30

R89

R79

R74

R9

bt
\Jivval

Registers

RO

Registersaccessible

y Routine A:
Logical Register Numbers
R31
Re%ﬂ?ers
R26
i Registers accessible
Registers . Eﬂqutine B
at6 Logical Register Numbers
R15 R31
Lo i
Registers Re’éﬂ{\ers
10 R26
R25
Local
Registers
R16
R15
Re‘g?s ers
R10
R9 R9 l
Clobal Registers Globa Globa
accessed by al ; i
TS Registers Registers
{RO RO

Figure 424. Parameter Passing with Register Windows.

routine specific set of registers. When Routine B needs the information passed to
it. it will access R26 and R27 (which are physically R90 and F91). Parameters
passed back to a calling routine will utilize the same technique, with Routine B
leaving results in, say, R31 (physically R95) and returning control to Routine A.
And Routine A obtains the value by accessing R15 (which is physically R95).
Note that no specia stack operations were involved to pass parameters, the
parameter passing was accomplished by merely organizing the processing in such
a way that, when the subroutine was called, the information to be passed was
found in the overlapped register area.

The use of register windows alows parameters to be passed without
memory intensive stack operations. A second benefit is that a subroutine need not
save state before beginning actual work. In a™norma® machine, if a suhroutine
is going to modify eight of the genera purpose registers, it will first save the con-
tents of those registers (probably on the stack). Then, before returning to the
calling routine, the registers can be restored to their previous value. These opera-
tions are not needed if register windows are used, since different physical registers
are used for each routine specific set of registers. However, care must be taken to
be sure that overlapped registers are used in a reasonable fashion.

Chap. 4: Instruction Set Processing

4.9.

The above technique will minimize the memory interactions needed for
parameter passing and subroutine use of registers, but the technique incurs some
different costs. Ouc of the cools IS the numbar of regisiers needed 10 sture the
information. Obviously, it would be ideal to have an infinite number of registers,
but that is not a reasonable solution. The number of registers included is based
upon the expected depth of subroutine calls. Studies of actual programs have
shown that, for most applications, the nesting level of subroutines is on the order
of eight. Including 144 registers would alow the above technique to have a sub-
routine call depth of eight before additional transfers would be needed. Obvi-
oudly, if the nesting level exceeds eight, then a great many memory transfers
would be required to save either the entire set of registers or some designated por-
tion of it. As with other techniques, the idea of including register windows in a
system is not solely a RISC concept, but rather a mechanism that can be utilized
wherever it will resultin an impioved system.

The use of memory is another of the interesting aspects of RISC architec-
tures that needs to be considered in a system. Memory technology has made
rapid advancesin both speed and size of available memory systems. In a time
when memory systems were quite small by today's standards, the size of a pro-
gram was a critical measure of the effectiveness of the system. However, as
memories have become faster and larger, the need for having smal programs has
been reduced. In general, programs on a RISC machine will occupy a somewhat
larger section of memory than similar programs on CISC machines, since more
instructionsare required to do the work. However, since memories are becoming
increasingly larger, this is often not considered a drawback. Also, since the archi-
tecture attempts to minimize delays due to memory interaction (separate
data/instruction paths, and register only arithmetic, for example), overal effect is
to createa system that can do work faster.

The term RISC refers to an approach rather than to a specific system or set
of requirements. For example, one of the tenetslisted aboveis that aRISC system
will use hardwired control, yet some computer systems advertise themselvesto be
RISC computers that utilize microcoded control systems. Real computer systems
will range from units that adhere strictly to the RISC approach and simplify all
aspectsof the system, to units that follow the CISC approach and include highly
complex capabilities. The ' best" system will be the one that makes the mosgt judi-
cious use of system resources to solve the problem for which it is intended. And
whether a RISC approach or a CISC approach is a better choice cannot be deter-
mined without applying appropriate metrics, and perhaps trying the systems in a
real application.

Summary

We have discussed a number of mechanismsfor doing work in computers, where
work is defined as directing a CPU to perform a specific task. The work that a
computer is capable of doing is defined by the set of instructions controlling the
operation of the machine. The set of instructionsof the system also identifies the
apparent architectureof the system or the instruction set architecture. Implemen-
tations of the architecturemay or may not contain all of the registers, functiona
units, and data paths alluded to in the instruction set architecture.

The structural aspect of the system — the functional units, data paths, and
storage elements included in the machine — will determine the mechanisms

Chap. 4: InstructionSet Processing 183

4.10.

needed to implement the instruction set architecture. When the structure of the
system is known, then the internal transfers required to carry out the work of the
instructions can be represented in a register transfer language.

Instructions that control the arithmetic and logic operations of a system can
have a varying number of addresses, from zero address stack machines to three
address systems capable of identifying both sources and destination of an opera-
tion. The choice of the instructions to be included in the system is made by the
system architect after careful consideration of the application area of the machine
and the utilization of available system resources to accomplish the required sys-
tem objectives.

The use of registersfor operand storage reduces the number of bits required
to identify the location of information as well as the time required to obtain the
information. Registers can aso be used to effectively identify the location of
vauesin a memory system.

Operands for instructions can be located in genera purpose memory or in
registers. The instruction set may contain multiple addressing modes to identify
the location of the information. These include combinationsof direct and indirect
addressing, indexing, stack operations, and instruction stream accesses.

Program control instructions alow changing the flow of control in a pro-
gram executing on the system. This change of flow can be unconditiona or based
on some status of the system. Also, routines can be called from within a program,
and a retum linkage established.

Interaction with devices extemal to the system is accomplished with 1O
instructions, or 1/0 techniques like memory mapped I/0. These devices have the
ability to signa the computer system, or “interrupt™ the program flow, when
interaction is needed. In addition, internal conditions, such as arithmetic
overflows, can cause interrupts within the system.

The RISC approach to computer architecture is to simplify actions to a
minimal set, and use high speed hardware and optimizing software techniquesto
createa system that will execute programsat a high speed.

The functiona units of a computer system, the interconnection system, and
the instruction set that controls the action of the system must be created with all
of the above ideas in mind. The architecture that is most effective in a given
application will make the most efficient use of system resources, where resources
can be time, power, memory, or any of a number of other measurable quantities.

Problems

41 A generd purpose computer system must have the ability to perform certain
basic functions in order to do useful work. Three of the basic functions are
store, load, and add.

a Namefour other basic functionsthat the computer must do.
b. Name four additional instructions that would be nice to have.

42 Consider a machine with the following characteristics:

It isa two address machine.

Subroutinelinkage is through a stack mechanism, in main memory.
There are eight general purpose registers, plus other special purpose
registers.

Chap.4: Instruction Set Processing

The machine is capable of absolute, indirect, base plus displacement.
and general indexed addressing modes.

a Give a block diagram showing the major componentsof the system and
their interconnection. Includearrowsindicating flow directiondf the data.

b. Using the block diagram, give the RTL necessary for

ADDRY, R2
Add the contents d register 1 to register 2
MOV *R1, *R2+
Move the contents of memoary dored at thr lecation identified by R1 tO
the location idertified by R2; then increment R2
CALL #AOF4
Go to the subroutinelocated a address An4F; this addressis storz=d in the
location followingthe CALL ingtruction in the ingtruction stream.
RETURN
Return to the calling routine from a subroutine.

4.3 Oneof the methods of evaluationfor a machineis to determineits behavior
for a program or program segment. Two of the basic computer methodsdis-
cussed in this chapter are single address machines with a general purpose
accumulator, and two address machines with a general register set. Create
block diagrams for a single address machine and a machine with a general
purpose register set. Then create assembly level code to implement the fol-
lowing statements:

for(i=0;i<100; i++)
Ali] = B[i] * C[i};

Use the code generated and contrast the two methods. In particular, identify

the number of instructions executed, the number of memory references
required, and the number of arithmetic operations. Which of the figures of

merit is the most crucia? Why?

44 Use the technique of Problem 4.3 to compare a CISC machine approach to a
RISC machine approach. That is, create block diagram representations for a
CISC architecture and a RISC architecture. Then create code to implement
the loop of Problem 4.3. Use the number of memory references, the number
of register references, and the number of arithmetic operations to contrast
the two methods.

45 You have been given the task of developing a single address computer to be
utilized in general purpose applications. This machine is to be a 16-bit
single address computer capable of direct and indirect addressing. Operands
obtained via the direct addressing mode are identified by their position
with respect to the PC, so the access method could be called PC relative.
This permits programsto be located anywherein the memory. The machine
will have more than eight but less than 16 instructions requiring memory
access.

a Give a block diagram of a computer that will fit these requirements.
Show al major registers, and all data paths, including the direction(s) of
data flow on the data paths.

Chap. 4: Instruction Set Processing 185

46

b. Propose a method for encoding the ingtruction information for the sys-
tem. That is, what should the instruction format be in the 16 bits stored in
the computer's memory.

C. Give the register transfer language steps required for the following
instructions:

ADD (indirect addressing)

CLEAR

JUMPTO SUBROUTINE (direct addressing)
RETURN FROM SUBROUTINE

Computer Designers, Inc., has been contracted to design a specia purpose
computer with the following requirements (not a complete list): The
machine will operate with a two address, register-oriented instruction set,
with 16 general purpose registers. These registers are denoted RO-R15. The
subroutine linkage is accomplished with a stack, R15 being the stack pointer.
The program counter is R14. Operands (results) are obtained (deposited)
either directly from (to) the registers or indirectly through the registers from
(to) fast semiconductor memory. The memory space is 65,536 bytes. The
indirect referencescan leave the pointer-register unchanged, increment it, or
decrement it. The instruction set is composed of over 16 instructions,
including ADD, SUBTRACT, INVERT, AND, OR, EX-OR, NEGATE, JUMP,
JUMP-SUBROUTINE, RETURN, and INCREMENT.

a Giveablock diagram of the data path of the machine.

b. Give sufficient formats to accomplish the instructions (that is, however
many formats are necessary: 1, 2, or more..).

C Givean RTL description of ADD (with direct addressing of the operands),
INVERT (use indirect, autoincrement mode to identify operand), JUMP-
SUBROUTINE (use indirect addressing to identify location of subroutine),
and RETURN.

i |
L] []
Memory
! L [RJLeed |
l ALU |
| Driver m
l ,
System Bus
RAR
Register r—: MUX : [sp]
4.7 Consider the above block diagram of a 16-bit single bus system. The pro-

gram counter (PC), stack pointer (SP), and instruction register (IR) are 16-bit

Chap. 4: Instruction Set Processing

48

registers capable of receiving information from and sourcing information to
the genera bus; the temporary registers (T1 & T2), the register address regis-
ter (RAR), and the memory address register (MAR) are only capable of
receiving information. The ALU can increment, decrement, invert, and add.
The stack pointer identifies the next available location; stack grows to lower
addresses in memory. The register memory contains 16 registers, and the
main memory has 65,536 locations. The MUX on the RAR is to select either
the source or destination register identification bits out of the 16-bit word
loaded into the RAR. The machine has a two address instruction set with the
following address modes: register, register indirect, register indirect autoin-
crement, immediate/absolute (absolute address is stored in next word of
instruction), and program counter relative (used for jumps only; 8-bit dis-
placement is stored in instruction word). Give the register transfer language
statements for the following instructions: (operand order is Source, Destina
tion)

a ADDRI, *R2

b. SUBTRACT *R5+, #2A48

c. CLEARR9

d. UMP$-9

€ GOSUB #9BA4

For the block diagram of Figure 4.10, give the RTL representation for

a JUMPINDIRECT <52>
52 is stored in location following jump in ingtruction stream. Use contents of
memory location 52 as target of jump.
b. ADDRI,R3
Add the contentsdf register | to the location in memory identified by register 3
¢ JuMP TO SUBROUTINE 145

Transfer control to a subroutine located a address 145. This address is stored
'in the memoary location following the instructionin the ingtruction stream.

d. INCREMENT R7

Memory

[m | [pc | | MAR |

!
[poC | [nDEx | | | xTRA |
Driver | I
1 f
System Bus

49

Consider the above block diagram of a computer. ACC, XTRA, IR, INDEX,
PC, MAR, and MBR are registers that can be filled from the system bus or
gated to the system bus. The ALU can do add, subtract, increment, decre-
ment, and al of the logic operations. Give a register transfer representation
of the complete instruction cycle for

a indirect addition

Chap. 4: Instruction Set Processing 187

4.10

4.11

412

413

b. indexed AND
C. unconditional jump

Consider a microcomputer that is a single address machine, with a genera
purpose accumulator (ACC) and a number of special registers. These regis-
tersinclude a 16-bit program counter (PC), a 16-bit stack pointer (SP), and a
16-bit index register (X). The address space is 16 bits, and the system is an
8-bit system. The system has four interrupt lines (0, 1, 2, 3, with line 0
assigned highest priority), which devices can assert to cause a vectored
interrupt. The numbersassociated with the vector lines refer to address allo-
cations starting from the last location of memory (FFFF). A software system
has been created that contains intermpt handlers for a floppy disk (routine
starts at EF36), a cassette tape recorder interface (routine starts at F340), a
line printer (routine starts at D454), and a terminal (routine start. at C344).

a Give the dlocation for the upper part of memory (give memory map for'
vector locations).

b. Give a register transfer language representation of the action that occurs
when the cassetterecorder assertsits intermpt line (which one is it?)

For the block diagram of Figure 4.2, give the register transfers required to
implement an ADD instruction, and a NEGATE instruction. Assume that the
number system involved is the two's complement number system. The ALU
can do the following: feed MBB through, add ACC and MBR, increment
ACC, and NAND ACC and MBR. Also, ACC can be cleared.

Consider the block diagram given for a Problem 4.7. The ALU is capable of
addition (T1 + T2), subtraction (Tt — T2), increment (TI * 1), decrement (T1
- 1), and logical operations (Tt op T2). All registers are registers only, not
counters too. Data paths, addresses, data are al 16 bits. Give the RTL for
thefollowing instructions:

a. ADD*RI, *{*R2)
Add the contents of memory whose addressis in R1 to the contents of another
memoary location, and store the results beck in this second memory location.
The second memary location is identified by an address which itsdlf is located
in memoary, and the addressdf the addressis found in R2.

b. s addr
Transfer program control to the subroutine located a "addr," which is an
address sored a the location following the instruction in the instructionstream.

¢ MOV address| R3, RS
Move the contents o a memary location to register 5. The address o the
memoary location is found by indexing "'address* by the contents of register 3.
That is "address™ which is found in the location following the ingtruction, is
added to the vaue in register 3, and the reaullt is used as an addressa which to
find the operand.

One of the mechanisms discussed for parameter passing was the concept of
register windows. Contrast a ' standard system and a system with register
windows by doing the following:

a Prepare a block diagram of a "standard” system with 32 registers.
Include as many time saving mechanisms as possible to help the execution
time of instructions.

b. Specify instructions needed in this architecture to do a subroutine call.

Chap. 4: Instruction Set Processing

411

Include not only the JMS itself, but also whatever other instructions are
needed to pass parameters.

C. Prepare RTL implementations for these instructions to identify execution
times. Then create a table of execution times for subroutine calls, since cal-
ling routines with a different number of parameters will result in different
effective times for the subroutine calls.

d-f. Repeat steps a-c for an architecture that uses the concept of register
windows. Use the same number of registers for the architecture as for the
nonregister window system. Assume that the system has a sufficient number
of registers to allow subroutine nesting to a depth of eight.

g. Suggest a mechanism to be utilized when the subroutine nesting level
exceeds eight. How much time will be required to handle that situation?

4.14 Obtain instruction set specifications and instruction set architecture descrip-
tions for the VAX architectcure, the MIPS architecture, and the 32000 archi-
tecture. Compare the contents of the status registers for the three systems,
and the conditional branch instructions available. Defend one of the
approaches as better than the other two, using system resource requirements
and reasonable metrics to explain your position.

References and Readings

[AgDa78] Aguero, U, and S. Dasgupta, "A Plausibility-Driven Approach to Computer
Architecture Design.”" Communications d rhe ACM. Vol. 30, No. 11, November
1987. pp. 922-932.

[AIWo75] Alexander. W. G, and D. B. Wortman, "' Static and Dynamic Characteristic of
XPL Programs* IEEE Computer. Vol. 8, No. 11, November 1975, pp. 41-46.

fAmBl64] Amdahl, G. M.. G. A. Blaauw, and F. P. Brooks. J., "Architecture of the IBM
System/360,” IBM Journal d Research and Development. Vol. 8, No. 2, April 1964,

pp. 87-101.
[Baer84] Baer, J. L., " Computer Architecture," Computer. Vol. 17, No. 10, October 1984,
pp. 77-87.
[Baer80] Baer. J. L.. Computer Systems Architecture. Rockville, MD: Computer Science
Press. 1980.

[Barb81] Barbacci, M. R., "Instruction Set Processor Specification (ISPS): The Notation
and its Application," IEEE Transactions on Computers. Vol. C-30, No. 1, January
1981. pp. 24-40.

[Basig2] Barbacci, M. R. and D. P. Siewiorek, The Design and Analysis d Instruction Sef
Processors. New York: McGraw-Hill Book Company, 1982.

[BaNo80] Barbacci. M. R, and J. D. Northcutt. *"Application of 1sps, An Architecture
Description Languege™ Journal o Digital Systems. Vol. 4, No. 3, Fall 1980, pp.
221-239.

[Ban85] Bartee, T. C., Digital Computer Fundamentals, 6th edition. New York: McGraw
Hill Book Company. 1985.

[Basa85] Basart, E.. “RISC Design StreamlinesHigh Power CPUs,” Computer Design. Vol.
24, No. 7, duly 1, 1985, pp. 119-122.

[BeNe71] Bel. C. G. and A. Newell, Computer Structures: Readings and Examples. New
York: McGraw-Hill Book Company, 1971.

Chap. 4: instruction Set Processing 189

[Blak77]) Blake. R. P. "Exploring a Stack Architecture.”" Computer. Vol. 10. No. §, May
1977. pp. 30-41.

[Bootg4] Booth, T. L., Introduction to Computer Engineering: Hardware and Software
Design. New York: John Wiley & Sons, Inc., 1984.

[Bulm77] Bulman. D. M.. "Stack Computers: An Introduction.” Computer. Vol. 10, No. 5,
May 1977, pp. 18-29.

[BuGo46] Burks, A. W.. H. H. Goldstine, and J. von Neumann, ** Preliminary Discussion of
the Logical Design of an Electronic Computing Instrument," Institute for Advanced
Studies, 1946, reprinted in [Swar76).

[Case85] Case, B., "Building Blocks Yield Fast 32-Bit RISC Machines," Computer Design.
Vol. 24, No. 7, duly 1, 1985, pp. 111-117.

[CoHi8s] Colwell. R. P.. C. Y. Hitchcock, E D. Jensen, et al., " Computers. Complexity.
and Controversy," Computer. Vol. 18, No. 9, September 1985, pp. 8-20.

[Dasg89] Dasgupta, S., Computer Architecture: A Modern Synthesis. New York: John
Wiley & Sons, Inc., 1989.

[Dasg84] Dasgupta, S., The Design and Description of Computer Architectures. New
York: John Wiley & Sons, Inc., 1984.

[DECC77] Digital Equipment Corporation. PDP 8/ Small Computer Handbook. Maynard.
MA: Digital Equipment Corporation, 1970.

[DECC77] Digitd Equipment Corporation, VAX!1-780 Architecture Handbook, Vol 1
Maynard. MA: Digital Equipment Corporation, 1977.

[Ditz8t] Ditzel. D. R, "Reflectionson the High-Level Language Symbol Computer Sys-
tem." Computer. Vol. 14, No.7, July 1981, pp. 55-66.

{FWag6] Fleming, P. J., and J. J. Wallace. "How Not to Lie with Statistics: The Correct
way to Summarize Benchmark Results,” Communications o the ACM. Vol. 29. No.
3, March 1986. pp. 218-221.

{FoDy82] Foderaro. J.. K. van Dyke, and D. A. Patterson. "'Running RISCs,” VLS! Design.
Vol. 3, No. 5, 1982, pp. 27-32.

[FoIb8s} Foster. C. C., and T. Iberall, Computer Architecture. 3rd. Edition. New York:
Van Nostrand Reinhold Co.. 1985.

[FuBu77] Fuller, S. H.. and W. E. Burr, " Measurement and Evauation of Alternative Com-
puter Architectures,” Computer. Vol. 10, No. 10, October 1977, pp. 24-35.

[Havr78] Hamacher, V. C.. Z. G. Vranesic, and S. G. Zaky. Computer Organization. New
York: McGraw-Hill Book Company. 1984.

[HaDe68) Hauck, E. A., and B. A. Dent. "Burroughs B6500/B6700 Stack Mechanisms."
Proceedings Spring Joint Computer Conference. 1968. pp. 245-251.

[HeJo82] Hennessy, J. L.. N. Jouppi. S. Przybylski, et a.," MPS A Microprocessor Archi-
tecture,” Proceedings o the 15th Annual Workshop on Microprogramming. Los
Angeles: IEEE Computer Society Press, 1982, pp. 17-22.

[Hirs84} Hirsch, A., "Tagged Architecture Supports Symbolic Processing,” Computer
Design. Vol. 23, No. 6, June 1, 1984, pp. 75-80.

{Hisp85] Hitchcock. C. Y., and H. M. B. Sprunt, "Analyzing Multiple Register Sets"
Proceedings o the 12th Annual International Symposium on Computer Architecture.
Silver Spring. MD: IEEE Computer Society Press. 1985, pp. 55-63.

Chap. 4: Instruction Set Processing

[HuLa85] Hugnet, M., and T. Lang, "A Reduced Register File for RISC Architectures."

SIGARCH Computer Architecture News. Vol. 13, No. 4, September 1985. pp.
2-31.

[Kain89} Kain, R. Y., Computer Architecture, Software and Hardware. Englewood Cliffs,
NJ: Prentice Hall. 1989.

[Kane87] Kane. Gerry, MIPS R2000 RISC Architecture. Englewood Cliffs, NJ. Prentice
Hall, 1987.

[Kate85) Katevenis, M. G. H., Reduced Instruction Set Computer Architectures for VLS.
Cambridge, MA: MIT Press, 1985.

[Kee78a] Keedy. J. L., "On the Use of Stacks in the Evaluation of Expressions." SIGARCH
Computer ArchirecrureNews. Vol. 6, No. 6, Februaty 1975, pp. 22-28.

[Kee78b] Keedy, J. L.. ""On the the Evaluation of Expressions Using Accumulators, Stacks,
and Store-Store Instructions,” SIGARCH Computer Architecture News, Vol. 7, No. 4,
December 1978, pp. 24-27.

[Keed79] Keedy, J. L., ""More on the Use of Stacks in the Evaluation of Expressons.
SIGARCH Computer Architecture News. Vol. 7, No. 8, June 1979, pp. 18-22.

{Lang82] Langdon, G. G.. J.. Computer Design San Jose, CA: Computeach Press, Inc,
1982.

[LoKi61] Lonergan, W.. and P. King. " Design of the B 5000 system,” Datamation. Vol. 7,
No. 5, May 1961. pp. 28-32.

f{Lund77] Lunde, A.,"Empirica Evaluation of Some Features of Instruction Set Processor
Architectures.” Communications of the ACM. Vol. 20, No. 3, March 1977, pp.
143-152.

[Mano82] Mano, M. M., Computer System Architecture. Englewood Cliffs. NJ Prentice
Hall, 1982.

[Myer77] Myers, G. J., "The Case Against Stack-Oriented Instruction Sets" SIGARCH
Computer Architecture News. Vol. 6, No. 3, August 1977. pp. 7-10.

[Myer78] Myers, G. J., "' The Evauation of Expressions in a Storage-Storage Architecture,”
SIGARCH Computer Architecture News. Vol. 6, No. 9, June 1978, pp. 20-23.

[Myer82] Myers, G. J, Advances in Computer Architecture. New York: John Wiley &
Sons. Inc., 1982.

[Pat85] Patterson. D. A.. "Reduced Instruction Set Computers,” Communications of the
ACM. Vol. 28, No. 1, January 1985, pp. 8-21.

[PaSe82] Patterson, D. A., and C. Sequin, A VLS RISC," Computer. Vol. 15, No. 9, Sep-
tember, 1982, pp. 8-21.

[PaSe81] Patterson, D. A., and C. Sequin, "RISC 1: A Reduced Instruction VLS| Set Com-
puter,” Proceedings of the 8th Annual International Symposium on Computer Archi-
tecture. New York: IEEE Computer Society Press, 1981, pp. 443--458.

[PaDig0] Patterson, D. A.. and D. Dietzel, "' The Case for the Reduced Instruction Set Com-
puter,” SIGARCH Computer Architecture News (SIGARCH). Vol. 8, No. 6, 1980, pp.
53R

[PaPi82] Patterson, D. A.. and R. Piepho. "RISC Assessment: A High Level Language
Experiment.” Proceedings of the 9th Annual Symposium on Computer Architecture.
New York: IEEE Computer Society Press, 1982. pp. 3-8.

{PeSn77] Peuto. B. L., and L. J Shustek, ""An Instruction Timing Model of CPU Perfor-
mance." Proceedings of the 4th Annual Symposium on Computer Architecture. New
York: ACM/IEEE, March 1977, pp. 165-178.

Chap. 4: Instruction Set Processing 191

{Radi82) Radin, G., "The 801 Minicomputer." Proceedings d the ACM Symposium on
Architectural Supportfor Programming Languages and Operating Systems. New
York: ACM, 1982, pp. 39-47.

[RiSm71} Rice, R., and W. R. Smith. "SYMBOL-A Magjor Departure from Classic Software
Dominated von Neumann Computing Systems,” AFIPS Conference Proceedings,
1971 SICC, Vol. 38. Montvale, NJ AFIPS Press, 1971, pp. 575-587.

[Sach81] Saur, C. H., and K. M. Chandy, Computer Systems Performance Modeling.
Englewood Cliffs, NJ. Prentice Hall, 1981.

{Schn85} Schneider. G. M., The Principles d Computer Organization. New York: John
Wiley & Sons, Inc., 1985.

[ShKa84] Sherbume, R. W., Jr, M. G. H. Katevenis, D. A. Patterson, and C. H. Sequin,
"A 32-Bit NMOS Processor with a Large Register Fle™ IEEE Journal d Solid State
Circuits. Vol. SC-19, No. 5, October 1984, pp. 682-689.

[Shus78] Shustek, L. J. "Analysis and Performance of Computer Instruction Sets'* Ph.D.
Dissertation, Stanford. CA: Computer Systems Laboratory, Stanford University,
1978.

[SiBe82] Siewiorek, D. P, C. G. Bell, and A. Newell, Computer Structures: Principles and
Examples. New Y ork: McGraw-Hill Book Company. 1982.

[Ston80] Stone. H. S. (Ed.), Introduction to Computer Architecture. Chicago. IL: Science
Research Associates. 1980.

[Swar76) Swartzlander, E. E,, J. (Ed). Computer Design Development: Principal Papers.
Rochelle Park, NJ Hayden Book Company, 1976.

[Tibe84] Tiberghien, J. (Ed.), New Computer Architectures. San Diego, CA: Academic
Press. 1984.

[Wwaligs] Wallich, P, " Toward Simpler, Faster Computers,” IEEE Spectrum. August 1985.
pp. 38-45.

[wilk83] Wilkes, M. V., *'Size, Power, and Speed.” Proceedings d the I0th Annual Inter-
national Symposium on Computer Architecture. Silver Spring, MD: | BEEE Computer
Society Press. 1983, pp. 2-4.

Chap. 4: Instruction Set Processing

