Discrete and continuous dynamic systems PIPE Petri net editor and analysis tool

Katalin Hangos, Anna Ibolya Pózna

University of Pannonia Faculty of Information Technology Department of Electrical Engineering and Information Systems

pozna.anna@virt.uni-pannon.hu

March 2020

PIPE - Platform Independent Petri Net Editor

- Source
 - https://sourceforge.net/projects/pipe2/files/PIPEv4/ PIPEv4.3.0/ (lates stable version)
- Constructing Petri nets
 - simple Petri nets
 - places with capacity
 - arc weights, inhibitor arcs
 - timed, prioritized transitions
 - "colored" tokens NOT CPN!
- Simulation
 - •
- Analysis
 - Incidence matrix, invariant analysis
 - Reachability graph
 - State space analysis (boundedness, safeness, deadlocks)
- Documentation:

http://sarahtattersall.github.io/PIPE/user_guide.html

User interface

Constructing a Petri net

To Transition Editor

properties of a place: name, default tokens, capacity

P0 I Edit Weight Ivset Point Delete

properties of an arc: weight, bend points properties of a transition: name, (weight), timing, priority

Simulation

- Enabled transitions are highlighted with red color
- Simulation modes:
 - manually fire a transition by clicking on it
 - randomly fire a transition
 - fire a given number of transitions

Analysis I

Consider the example on the previous slide:

Invariant Analysis				
Source net Use current net Filename:				
Results				
Petri net invariant analysis	s results			
T-Invariants				
T0 T1 T2				
The net is not covered by positive T-Invariants, th if it is bounded and live.	erelore we do not kno			
P-Invariants				
P0 P1 P2				
The net is not covered by positive P-Invariants, the	erefore we do not kno			
if it is bounded.				
P-Invariant equations				
M(P1) + M(P2) = 1				
Analysis time: 0.001s				
Copy Save				

Analysis II

• Reachability graph

			😑 🗉 😣
	Reachability/Coverability Graph 🧧	▶ + Zoom: 125% ▼ Rotate: 0° ▼	
Sourc	e net		
🗹 Use	e current net Filename: Browse	S1	
Result	ts	T1	
	Reachability/Coverability Graph Results	T2 50	
	Generating Reachability graph took 0.105s Constructing it took 0.294s Total time was 0.399s	4 T0 52 T1 4 T2 53	
	Copy Save	Vanishing State (Initial State) Vanishing State	. v
	Generate Reachability/Coverability Graph		Þ
M	Display initial state(S0) in a different shape	Marking corresponds to {P0, P1, P2} Hover mouse over nodes to view state marking	

Analysis III

٢	State	space	ana	lysis

State Space Analysis 🛛 😣					
Source net					
Use current net Filename: Browse					
Results					
Petri net state space analysis results					
Bounded true					
Safe true					
Deadlock faise					
Copy Save					
Analyse					

• Conservativity? Liveness?

Consider the following unbounded net:

• Generate the reachability/coverability graph

Bugs... II

• Hover the mouse over the nodes. The unbouded places have large number of tokens at the beginning...

- Construct the Petri net of the coffee automaton, given in the tutorials. Take care of the place capacities!
- Simulate the model! Try different initial markings!
- Analyse the model (boundedness, safety, deadlock, reachability graph)