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Previous notions Discrete event systems

Discrete event systems

Characteristic properties:
@ the range space of the signals (input, output, state) is discrete:
z(t) € X = {zo, 21, ..., Tn}
@ event: the occurrence of change in a discrete value
e time is also discrete: T = {to,t1,...,t,} ={0,1,...,n}
Only the order of the events is considered
@ description of sequential and parallel events

o application area: scheduling, operational procedures, resource
management



Previous notions

Discrete event systems

Discrete time linear state space models

z(k+1) = ®x(k) 4+ Tu(k)
y(k) = Cx(k) + Du(k)
given initial condition x(0);

(state equation)
vector valued signals

(output equation)

z(k) e R", y(k) e R?, u(k) e R"
system parameters:

PRV, TeR™ , CeRP™, DeRP
(Not necessarily) equidistant (¢t — tx—1 = Ah)

w(k) =2(t) » ulk) =ultr) , y(k)



Previous notions

Discrete event systems

Discrete event systems — discrete time state space models

z(k+1) = ¥(z(k)
y(k) = h(xz(k),u(k

Generalization of discrete time linear state space models

(k)) (state equation)
h.

U
b
) (output equation)

with given initial condition 2(0) and nonlinear state ¥ and output function
Discrete event system

@ discrete time with non-equidistant sampling

@ the range space of the signals is discrete

© event: change in the discrete value of a signal




Previous notions Automata models

Automaton - abstract model: G = (X, U.Y, f, g, zo)

o finite set of states: X = {x1,x9,...2,}
o finite set of input events: U = {e;uy, ug, ..., up }
o finite set of output events: Y = {e; 41,92, ..., Yx }
o (partial) state transition function:

f:XxU— Xeg f(x1,u3) =2
@ output function:

g: X xU =Y eg. g(x1,u3) =y1 (Mealy automaton)
g: X =Y eg g(xr1) =y2 (Moore automaton)

@ initial state: xg

Graphical description: weighted directed graph
e Vertices: states (X)
e Edges: state transitions (f)

e Edge weights: input/output symbols (Mealy),
input symbols (Moore)



Previous notions

Operation of automata

Automata models

Given
o Initial state: x

@ The content of the input tape: U = [uy,ug, ..., uyl,u; € U
Compute
@ The content of the output state: Y = [y1, ya,

’yn] y Yi € Y
a/02

o (2

c/02

d/o1




Previous notions

Automata models

Automata - discrete event systems

Automaton Discrete event state
model space model
State space X X ez”
Input u string from U discrete time
discrete valued signal
Output y string from Y’ discrete time
discrete valued signal
State x(k+1) = f(x(k),u(k)) | z(k+1)=VY(x(k),u(k))
equation
Output | y(k) = g(z(k), u(k)) (Mealy)
equation y(k) =




Previous notions

Simple examples

Introductory example: Garage gate




Previous notions

Simple examples

Simple example: Runway
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Petri net models

Overview - Petri nets: modelling and dynamics

© Petri net models
@ Description forms
@ Operation (dynamics) of Petri nets
@ Parallel and conflicting execution steps



Petri net models

Description forms

(ordinary) Petri net - abstract description:

PN = (P,T,1,0)

Static description (structure)
- Do h1
e set of places (conditions): P
e set of transitions (events): 7'

e Input (pre-condition) function:
I:T — P*®

to
e Output (consequence) function:

O:T— P*®

Graphical description: bipartite directed graph C) P2

e Vertices: places (P) and transitions (7')
(partitions)

e Edges: input and output functions (1, O)




Petri net models

Example: garage gate — 1

Description forms

Petri net model - graphical description

Pautove

P gombrar

Peieszvar
t]egyki

Pautovar

t

Preenged
sorfel

sorle
Pgombbe Piegyetvesz

Pautogarazsba




Petri net models

Example: garage gate — 2

Description forms

Petri net model - formal description
Places (states; inputs):

P = {pautovarapgombvarapelveszvarapbeenged ;
Transitions:

Pautobes Pgombbes Pjegyeleveszs pautoga’/’azsba}
Input function:

T= {tgombv tjegykia tsorfela tsorle}

Output function:

I(tgomb) = {pautobeapautovar} ) I(tjegyki) = {pgombbeapgombvar}
I(tsorfel) = {pjegyelveszapelveszvar} 3 I(tsorle) = {pbeengedapautogarazsba}

O(tgomb) = {pgombvar}
O(tsorfel) = {pbeenged}

s O(tjegyki) = {pelveszvar}
5 O(tsorle) = {pautovar}

[m]

=




Petri net models

Dynamics of Petri nets

o tokens in places represent that the place is
"active" (condition is "true")

e the marking function assigns tokens to each
place:

uw:P—-N |

p(pi) = pi >0

e the marking vector denotes the number of
tokens on the places

HT:[H15M27 7”77,] ’ n:|P|
e marked Petri net : PN = (P, T,I,O,E(O))
o (0 is the initial marking

o example: p=[1,1,0]7

Operation (dynamics) of Petri nets

Po P




Petri net models

Dynamics of Petri nets

Operation (dynamics) of Petri nets

places)

A transition t is enabled when its pre-conditions are
"true" (there is at least one token on its input

bo p1
wu(p) > 1 Vp, where I(t,p) exists
An enabled transition may fire (operate): it

"consumes" tokens from all of its input places and
produces tokens in each output places

to
Notion: E(i)[tj > H(Hl)

Firing (operation) sequence

E(O) [tj() > H(l)[tﬂ > ...[tjk > 1%

(k+1)




Petri net models

Dynamics of Petri nets

Operation (dynamics) of Petri nets

places)

A transition t is enabled when its pre-conditions are
"true" (there is at least one token on its input

bo
wu(p) > 1 Vp, where I(t,p) exists

b1
An enabled transition may fire (operate): it

"consumes" tokens from all of its input places and
produces tokens in each output places

to
Notion: E(i)[tj > H(Hl)

Firing (operation) sequence

(k+1)

E(O) [tj() > H(l)[tﬂ > ...[tjk > 1%




Petri net models Operation (dynamics) of Petri nets

Example: garage gate — 3

One operation steps

Pautobe

Poneszvar Poeenged

[

sorle

Pautovar
Pjegyetvesz Pautogarazsba
Pautobe
Penveszvar Poeenged

t t

gomb sortel [
p —

autovar

Piegyeivesz Pautogarazsba




Petri net models

Example: garage gate — 4

Operation (dynamics) of Petri nets

Formal description of an operation step
Marking vector

HT

[Nautova’ra Hgombvar s Melveszvars Mbeenged 3

Hautobe s Hgombbes Hjegyeleveszs ,u’autogarazsba]
Operation (firing) of transition tgomp

pM=1[1,0,0,0;1,0,0 07

p® =[0,1,0 050,00, 07




Petri net models

Parallel events

Parallel and conflicting execution steps

More than one enabled (fireable) transition:

concurrency (independent conditions), conflict, confusion
Pi

Ps




Petri net models

Conflict resolution

Parallel and conflicting execution steps
Using inhibitor edges:

priority given by the user
test edges
Other solutions:

capacity of the places

Pready

drain Prank
Poump




Petri net models

Conflict resolution

Parallel and conflicting execution steps

Inhibitor edges - Example

to 1s enabled to fires, t1 becomes enabled

t1 fires

B
D2 I—>
o

@ ¢
= ORI e
- s (pg)/ s p@/ s
a, b,



Petri net models

Conflict resolution

Parallel and conflicting execution steps

Capacity of places - Example

t1 and to are enabled
t

)
2

t1 fires, only to is enabled to fires
t (1) t 1)
0 ) F
2 2
e e
3
a,

b3

[2) (1
B
b,

c,



Petri net models

Petri net model of a runway — 1
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Parallel and conflicting execution steps



Petri net models

Petri net model of a runway — 2

Parallel and conflicting execution steps

Conflict resolution: landing aircraft has priority
ple

P fetogr 1

kesz_le
P f_szabad

p v_le

t

fo_fel
p v_fel

Py teirogi t

Kesz_fel

Y fel




Solution of Petri net models
Overview - Solution of Petri net models

© Solution of Petri net models
@ The reachability graph



Solution of Petri net models
The solution problem

Abstract problem statement
Given:

@ a formal description of a discrete event system model
e initial state(s)
o external events: system inputs

Compute:

o the sequence of internal (state and output) events
The solution is algorithmic!

The problem is NP-hard!




Solution of Petri net models The reachability graph

Petri net models — reachability graph

Solution: marking (systems state) sequences
reachability graph (tree) (weighted directed graph)

@ vertices: markings
@ edges: if exists transition the firing of which connects them

@ edge weights: the transition and the external events

Construction:
Q start: at the given initial state (marking)

@ adding a new vertex: by firing an enabled transition (with the effect of
inputs!)

May be N P—hard (in conflict situation or non-finite operation)



Solution of Petri net models

The reachability graph

The state space of Petri net models

State vector: marking in internal places

in- and out-degree is at least 1

k
~ k)
Inputs: marking in input places
in-degree is zero



Solution of Petri net models The reachability graph

Example: garage gate

Petri net model

Pautobe

Potvoszvar

Lol

Pautovar

Piegyeivesz Pautogarazsba

T
Hm = [Nautovar, Hgombvars Helveszvar, Mbeenged]
T
ﬂu = [Nautobe: Hgombbes Hjegyeleveszs Nautogarazsba]
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