
Parameter Estimation - Computer Laboratory 1
Table of Contents

MATLAB basics..1
Commands... 1
Matrices and arrays... 2

Creating vectors/matrices/arrays..2
Data visualization... 6

Individual tasks...9
Random variables.. 9

Uniformly distributed random numbers..10
Normally distributed random numbers...11
Normally distributed random numbers (Statistics and Machine Learning Toolbox)..12
Multivariate normal distribution (Statistics and Machine Learning Toolbox)..13
Control random number generation...14

Individual tasks...14
Basic statistics..15

Mean value...15
Standard deviation... 15
Variance..16
Covariance..16
Autocovariance... 17
Correlation.. 18
Histogram... 20

Individual tasks...23
HOMEWORK (Deadline: 2020 September 30, 10:30).. 23

MATLAB basics
MATLAB is the abbreviation for MATrix LABoratory. It is a numerical computing environment, that offers many

opportunities for data analysis, visualization, design, etc. It has its own programming language, which can be

used to write scripts, functions and different applications.

The MATLAB language is

• matrix-based: variables are multidimensional arrays, no matter what type of data. MATLAB operates

primarily on whole matrices and arrays, instead of one number.

• weakly typed: the variables have their own types, but they are not strict. Expressions between various

different types are allowed.

Commands
The commands can be entered and executed directly in the Command Window:

• Create variables:

a=1;
b=2

b = 2

1

The variables a and b appeared in the workspace. Omitting the ; will immediately display the result in

the Command Window.

• Perfrom some operations

c=a+b

c = 3

d=cos(c)

d = -0.9900

d^2

ans = 0.9801

sqrt(d)

ans = 0.0000 + 0.9950i

When you do not specify an output variable, MATLAB uses the variable ans, short for answer, to store the

results of your calculation. ans stores only the current result, it will be overwritten by the next result.

Matrices and arrays
In MATLAB all variables are arrays, and the operations are matrix operations. A matrix is a two dimensional

array and a vector is a matrix with only one row or column.

Creating vectors/matrices/arrays

• Create a row vector

x=[1 2 3 4]

x = 1×4
 1 2 3 4

• Create a column vector. The end of a row is denoted by;

y=[5;6;7;8]

y = 4×1
 5
 6
 7
 8

• Create a 2x3 matrix

A=[1 2 3; 4 5 6]

A = 2×3
 1 2 3

2

 4 5 6

• Cell arrays: the elements of the array can be of different types, e.g. vector, string, matrix. The elements

of cell arrays can be listed between {}

C={'text' [0 1]; [] A}

C = 2×2 cell

1 2

1 'text' [0,1]

2 [] [1,2,3;4...

• Indexing: the elements of a vector/matrix can be a accessed by specifying the row/column indices

between (). The cell array indices can be given between { }. Important: in MATLAB the indexing starts

from 1! The last element can be accessed by the end index. The full row/column can be selected by :

x(2) %2nd element of x

ans = 2

x(end) %last element of x

ans = 4

y(3) %3rd element of y

ans = 7

A(1,2) %2nd element in the 1st row of A

ans = 2

A(:,1) %first column of A

ans = 2×1
 1
 4

C{2,2} %2nd element in the 2nd row of C cell array

ans = 2×3
 1 2 3
 4 5 6

• Creating vectors with linear increment

v1=0:100 %vector of elements from 0 to 100 with increment 1 between the elements

v1 = 1×101
 0 1 2 3 4 5 6 7 8 9 10 11 12

v2=0:5:100 %vector of elements from 0 to 100 with increment 5 between the elements

3

v2 = 1×21
 0 5 10 15 20 25 30 35 40 45 50 55 60

• Creating linearly spaced vectors

v3=linspace(0,100) %linearly spaced vector between 0 and 100 with 100 points

v3 = 1×100
 0 1.0101 2.0202 3.0303 4.0404 5.0505 6.0606 7.0707

v4=linspace(0,100,20) %linearly spaced vector between 0 and 100 with 20 points

v4 = 1×20
 0 5.2632 10.5263 15.7895 21.0526 26.3158 31.5789 36.8421

• Creating matrices with functions (ones, zeros, eye, rand).

O1=ones(3)

O1 = 3×3
 1 1 1
 1 1 1
 1 1 1

O2=ones(2,4)

O2 = 2×4
 1 1 1 1
 1 1 1 1

Z=zeros(2,3)

Z = 2×3
 0 0 0
 0 0 0

E=eye(3)

E = 3×3
 1 0 0
 0 1 0
 0 0 1

Operations

• Scalar addition

B=A+0.5

B = 2×3
 1.5000 2.5000 3.5000
 4.5000 5.5000 6.5000

• Scalar multiplication

4

C=2*B

C = 2×3
 3 5 7
 9 11 13

• Transpose

A'

ans = 3×2
 1 4
 2 5
 3 6

• Addition: elemet-wise operation - matrices have to be the same size

A+B

ans = 2×3
 2.5000 4.5000 6.5000
 8.5000 10.5000 12.5000

• Multiplication: matrix operation - inner matrix dimensions must agree

A'*B

ans = 3×3
 19.5000 24.5000 29.5000
 25.5000 32.5000 39.5000
 31.5000 40.5000 49.5000

• Power: for square matrices only!

D=[1 2; 3 4]

D = 2×2
 1 2
 3 4

D^2

ans = 2×2
 7 10
 15 22

• Element-wise operations: using the .*, ./, .^ you can perform elementwise multiplication, division and

power on the matrices.

A.*B %A(1,1) is multiplied by B(1,1), and so on

ans = 2×3
 1.5000 5.0000 10.5000
 18.0000 27.5000 39.0000

5

A./C %A(1,1) is divided by C(1,1), and so on

ans = 2×3
 0.3333 0.4000 0.4286
 0.4444 0.4545 0.4615

B.^3 %B(1,1)^, B(1,2)^3, ...

ans = 2×3
 3.3750 15.6250 42.8750
 91.1250 166.3750 274.6250

• Inverse: for square, invertable matrices only!

inv(D)

ans = 2×2
 -2.0000 1.0000
 1.5000 -0.5000

• size of a vector/matrix: size(v) returns the number of rows and columns.

size(D)

ans = 1×2
 2 2

size(v1)

ans = 1×2
 1 101

Data visualization
Different kinds of plots can be used to display the data, e.g. line scatter, surface and contour plots. You display

the selected variable by choosing a plot type from the PLOTS menubar, or entering plot functions in the

Command Window.

• 2-D line plot: the plot function is the most often used data visualization function. It can display vector

variables in a 2D coordinate system.

x1=-5:0.2:5;
y1=sin(x1);
plot(x1,y1)

6

• Line style: dashed: -- dotted: :, dash-dotted: -.

• Marker symbols: * (asterix), o (circle), x (cross), + (plus sign), ^ (triangle), . (dot), s (square), d (diamond)

etc.

• Multiple vectors with the same data length can be plotted together: plot(x1,y1,x2,y2,...)

• Vectors with different lengths can be plotted on the same figure, using the hold on command

y2=0.5*sin(x1);
y3=sin(0.5*x1);
x2=-5:5

x2 = 1×11
 -5 -4 -3 -2 -1 0 1 2 3 4 5

plot(x1,y1,x1,y2,'ro',x1,y3,'k--')
hold on
plot(x2,0.5*x2,'g:')

• Matrix heatmap: the entries of the matrix are displayed with different colors. Greater elements have

stronger colors.

hold off

7

heatmap(C)

8

Individual tasks

1. Create a row vector v with elements from 1 to 5 with 0.5 increment!

2. Create a matrix M whose first row is v and the second row is the square of elements in v !

3. Multiply v with M'! Save the result in a new variable M2!

4. Is the matrix M invertable? Why?

5. Multiply M with M'! Save the result in a new variable M3!

6. Is M3 invertable? If yes, compute the inverse!

7. Plot the second row of M in the function of the first row, using red x markers!

Random variables

9

True random numbers are generated by natural processes or physical phenomenon, for example atmospheric

noise, termal noise, rolling a dice. The outcomes of these processes are totally random, they cannot be

predicted and cannot be affected. The implementation of true random number "generators" is very expensive,

therefore we use so-called pseudorandom generators in most of the cases.

The pseudorandom generators use different kinds of algorithms to create numbers, that seem to be random.

However, unlike the true random numbers, the sequence of pseudorandom numbers can be reproduced,

knowing the initialization of the generator (seed).

In MATLAB different pseudorandom number generators are available, that generate numbers with specified

probability distributions. The sequence generated by these functions can be used as a sample from the

underlying random variable with specified distribution. The generated numbers also compose a white noise

process.

Uniformly distributed random numbers
The rand function generates uniformly distributed random numbers from the interval (0,1). Syntax:

rand(dim1,dim2,...,dimn)

N=270 %number of samples

N = 270

a=-6 %left side of the interval

a = -6

b=3 %right side of the interval

b = 3

r1=rand(1,N);
r2=a+(b-a)*rand(1,N);
clf
plot(r1,'b.')
hold on
plot(r2,'r.')
hold off

10

Normally distributed random numbers
The randn function generates random numbers from the standard normal distribution (mean=0, variance=1).

Syntax: randn(dim1,dim2,...,dimN)

N=1000%number of samples

N = 1000

m=-1%mean

m = -1

s=8%standard deviation

s = 8

rn1=randn(1,N);
rn2=m+s*randn(1,N);
clf
plot(rn1,'b.')
hold on
plot(rn2,'r.')
hold off

11

To generate random numbers from a normal distribution with given mean m and standard devition s, you need

to transform the randn function.

Normally distributed random numbers (Statistics and Machine Learning Toolbox)
The Statistics and Machine Learning Toolbox offers additional opportunities to create random variables.

The normrnd function generates random numbers from the normal distribution with given mean and standard

deviation.

• normrnd(mu,sigma) generates a single random number from the normal distribution with mean mu

and standard deviation sigma.

• normrnd(mu,sigma,dim1,...,dimN) generates an array of random numbers with dimensions

dim1,...,dimN

mu=3.5

mu = 3.5000

sigma=2.5

sigma = 2.5000

dim1=2

dim1 = 2

12

dim2=5

dim2 = 5

normrnd(mu,sigma,dim1,dim2)

ans = 2×5
 5.6906 -0.5083 1.7457 4.0877 3.1103
 5.5199 -2.4051 7.6298 3.1206 6.0954

Multivariate normal distribution (Statistics and Machine Learning Toolbox)
The mvnrnd function can be used to generate random numbers from multivariate normal distributions. To

define the multivariate normal distribution, you need to specify the mean vector mu and the covariance matrix

sigma. If mu is a mxd matrix, then each row of mu refers to one mean vector of a single multivariate normal

distribution.

• mvnrnd(mu,sigma) returns one random vector from the multivariate normal distribution.

• mvnrnd(mu,sigma,n) returns n random vectors from the multivariate normal distribution.

mu=[1 2];
sigma=[2 0.8; 0.8 0.5];
N=1000;
R=mvnrnd(mu,sigma,N);
plot(R(:,1),R(:,2),'b.');

13

Control random number generation
The generated random numbers depend on the initial state of the generator. The generator resets its state

when MATLAB is restarted, that is why you get the same numbers after the start of MATLAB. The random

number generation can be controlled by specifying the type of the generator and the seed, and the state of the

generator can be saved and restored later to reproduce the experiment.

• rng(seed) sets the initial state of the generator, the seed can be 0, a positive integer, 'default',

'shuffle' (current time)

• rng('generator') sets the type of the random number algorithm, e.g 'twister','philox'

• S=rng saves the state of the generator

• rng(S) restore the state of the generator

rng(2); %seed=2
S=rng

S = struct with fields:
 Type: 'twister'
 Seed: 2
 State: [625×1 uint32]

rv1=rand(1,10)

rv1 = 1×10
 0.4360 0.0259 0.5497 0.4353 0.4204 0.3303 0.2046 0.6193

rng('shuffle','philox')
rv2=rand(1,10)

rv2 = 1×10
 0.1127 0.2588 0.0173 0.7158 0.5740 0.5595 0.3695 0.6679

rng(S)
rv3=rand(1,10)

rv3 = 1×10
 0.4360 0.0259 0.5497 0.4353 0.4204 0.3303 0.2046 0.6193

Individual tasks

1. Create 1000x1 vector (u1) of random numbers with uniform distribution on the interval (-1,5)!

2. Create a 1000x1 (u2) vector of random numbers from a normal distribution with mean 6 and variance 4!

3. Plot the first two vectors on the same figure! Use dot markers!

4. Let us assume that we have two random variables: and . Create 1000 random

vectors (u3) from the vector valued normal distribution, that is composed of and : ,

assuming that and are independent.

5. Consider another vector valued random variable , but now the covariance between and

is 3.2. Generate 1000 random vectors (u4) from .

6. Plot u3 and u4 in the same 2D coordinate system!

14

Basic statistics
A sample is a collection of n independent random variables. The sample corresponds to a set of measurements

about the random variable. Statistics is a deterministic function of the sample elements. It can be used to

construct an estimate. The measured data set is a realization of the sample. In MATLAB the following basic

statistics functions are available.

Mean value

The mean function computes the mean value of the elements in a vector or a matrix. In case of matrices the

mean value is computed along the columns by default.

• mean(x) returns the mean of the vector x

• mean(A) returns the mean of the matrix A along the columns

• mean(A,dim) returns the mean of the matrix A along the specified dimension (1 - columns, 2 - rows)

mean(rn2) %mean of the rn2 vector (normal distribution with mean m)

ans = -0.5919

mean(R) %mean of the R matrix (samples from multivariate normal distribution, 2 columns)

ans = 1×2
 1.0275 2.0029

mean(A,2) %mean of elements in the rows of A

ans = 2×1
 2
 5

Standard deviation

The std function can be used to compute the standard deviation of elements in a vector or matrix. In case of

matrices the standard deviation is computed along the columns by default.

• std(x) returns thestandard deviation of the vector x

• std(A) returns the standard deviation of the matrix A along the columns

• std(A,w,dim) returns the weighted standard deviation of the matrix A along the specified dimension

(w: 0 - normalized by N-1, 1 normalized by N, dim: 1 - columns, 2 - rows)

std(rn2) %std of the rn2 vector (normal distribution with mean m)

ans = 7.8073

15

std(R) %std of the R matrix (samples from multivariate normal distribution, 2 columns)

ans = 1×2
 1.4091 0.7059

std(A,0,2) %std of elements in the rows of A

ans = 2×1
 1
 1

Variance

The var function can be used to compute the variance of elements in a vector or matrix. In case of matrices the

variance is computed along the columns by default.

• var(x) returns the variance of the vector x

• var(A) returns the variance of the matrix A along the columns

• var(A,w,dim) returns the weighted variance of the matrix A along the specified dimension (w: 0 -

normalized by N-1, 1 normalized by N, dim: 1 - columns, 2 - rows)

var(rn2) %variance of the rn2 vector (normal distribution with mean m)

ans = 60.9542

var(R) %variance of the R matrix (samples from multivariate normal distribution, 2 columns)

ans = 1×2
 1.9855 0.4983

var(A,0,2) %variance of elements in the rows of A

ans = 2×1
 1
 1

Covariance

 with

The covariance matrix is a symmetric square matrix, whose diagonal elements are the variances of the

corresponding samples.

The cov function can be used to compute the covariance of two random variables.

16

• If the input is a vector, then cov(x)=var(x).

• If the input is two vector, then cov(x,y) returns the covariance matrix of x and y.

• If the input is a matrix, then its columns are corresponding to the separate measurements.

cov(rv1,rv2)

ans = 2×2
 0.0297 0.0032
 0.0032 0.0619

cov(R)

ans = 2×2
 1.9855 0.7943
 0.7943 0.4983

Autocovariance

The xcov function computes the cross-covariance between two vectors. If the input is only one vector, then it

computes the autocovariance.

• c=xcov(x) returns the autocovariance sequence of x.

• [c,lags]=xcov(x) returns the autocovaraince sequence and the time lags, where the covariances

were computed.

• xcov(_,maxlags) specifies the maximum lags

• xcov(_,scaleopt) specifies the normalization options. By default the computed autocovariances are

not normalized (i.e. the sum is not divided by n-s). The following options can be specified:

• 'none': raw, unscaled cross-covariance.

• 'biased' — Biased estimate of the cross-covariance, the value is normalized by 1/n.

• 'unbiased' — Unbiased estimate of the cross-covariance, the value is normalized by 1/(n-s)
• 'normalized' or 'coeff' — Normalizes the sequence so that the autocovariances at zero lag equal

1.

x=[0.1 0.2 0.3 0.4]

x = 1×4
 0.1000 0.2000 0.3000 0.4000

[c,lags]=xcov(x,'unbiased')

c = 1×7
 -0.0225 -0.0075 0.0042 0.0125 0.0042 -0.0075 -0.0225
lags = 1×7
 -3 -2 -1 0 1 2 3

stem(lags,c);

17

xcov(x,1)

ans = 1×3
 0.0125 0.0500 0.0125

Correlation

estimate of the correlation coefficient:

The correlation between two random variables is the normalized covariance. It informs us about the relationship

between the two random variables. If the random variables are independent, then their correlation is 0, however

0 correlation implies independence only in case of Gaussian joint distribution! Non-zero correlation implies that

the two random variables are dependent, but it does not mean causation. Spurious correlations

In MATLAB the corrcoef function returns the correlation matrix between two (or more) vector of observations

of random variables. The correlation matrix is always a symmetrical matrix with 1 in the diagonal. Example:

18

https://www.tylervigen.com/spurious-correlations

corr=corrcoef(R)

corr = 2×2
 1.0000 0.7986
 0.7986 1.0000

heatmap(corr)

R2=[randn(100,1),2*randn(100,1),3*randn(100,1)];
corrcoef(R2)

ans = 3×3
 1.0000 0.0896 0.0141
 0.0896 1.0000 0.1674
 0.0141 0.1674 1.0000

heatmap(corrcoef(R2))

19

Histogram
The histogram is approximate representation of the probability density function of a (scalar valued) random

variable. In MATLAB the histogram function can be used to display the histogram plot.

• histogram(X) simply creates a histogram plot with automatically computed number of bins.

• histogram(X,nbins) creates a histogram plot with nbins number of bins.

bins=52;
histogram(rn1);

20

histogram(rn1,bins);

21

• hist3(X) creates a 3D histogram of the bivariate data in X using a 10x10 grid of containers.

• hist3(X,NBINS) creates a 3D histogram plot using the custom grid of containers.

hist3(R)

22

Individual tasks

1. Compute the mean value, standard deviation and variance of u1 and u2!

2. Compute the covariance and correlation between u1 and u2!

3. Create (separate) histogram plots of u1 and u2! Try different number of bins.

4. Compute the mean value of the vector valued random variable, whose observations can be found in u3!

5. Compute the covariance and the correlation between the and if the measurement data can be found

in u3! What can you say about the independence of and ?

6. Compute the mean value of the vector valued random variable, whose observations can be found in u4!

7. Compute the covariance and the correlation between the and if the measurement data can be found

in u4! What can you say about the independence of and ?

8. Create (separate) 3D histogram plots of u3 and u4!

HOMEWORK (Deadline: 2020 September 30, 10:30)

1. Create a 100x1 vector (x1) of random numbers with normal distribution with mean 1 and standard

deviation 2.

2. Compute the mean (m1) and the a variance (v1) of x1 along the rows (normalize the variance with N-1)

3. Compute the unbiased autocovariance sequence (ac) of x1 from lags -2 to 2.

23

4. Create another vector (x2) with the same size as x1, with normal distribution with mean -2 and standard

deviation 2.

5. Compute the covariance and the correlation matrices of x1 and x2. Are they independent?

Send the created script file (NEPTUNKOD-HW1.m) to pozna.anna@virt.uni-pannon.hu!

24

