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Previous notions CT-LTI system models

Systems

System (S): acts on signals

y =S[y]
e inputs (u) and outputs (y)
t t
ut) System S yQ)
inputs outputs
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Previous notions CT-LTI system models

CT-LTI system models

Input-output (I/0O) models for SISO systems
@ time domain

@ operator domain

State-space models
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Previous notions CT-LTI system models

CT-LTI /O system models (SISO)

Transfer function — Linear diff. equation model

d"y d"‘ly dy B
£{anw + an—1 e +..+ a +apy} =
du d™u
= bi— + ...+ by,——
,C{bou-i- 1 p + ...+ dtm}
_Y(s) _ b(s)

A= Ts) = ()

Transfer function — Impulse response function

H(s) = L{h(t)}
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Previous notions CT-LTI system models

CT-LTI state-space models

General form

x(t) = Ax(t) + Bu(t) (state equation)
y(t) = Cx(t) + Du(t) (output equation)
with

@ given initial condition x(tp) = x(0) and x(t) € R",

o y(t) e RP, u(t) e R"

@ system parameters

AcR™" BeR™  CeRP*", DeRP

K. Hangos (University of Pannonia) Feb 2018



Sampling
Overview

© Sampling
@ System elements for sampling
@ Sampled state-space model

K. Hangos (University of Pannonia) Feb 2018 8 /25



Sampling ~ System elements for sampling

Sampling

System elements for sampling

Continuous
i t
u(t) D/A u) ] e
)
system S

Discrete-time system

Discrete-time
control

algorithm

Computer
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Sampling ~ System elements for sampling

Zero order hold sampling

Operation of the D/A converter

- I
— CT signal
14 —u— ZOH sampled signal
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time
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Sampling ~ System elements for sampling

Sampling of CT-LTI systems

Given:
x = Ax+ Bu
y=Cx+ Du

Zero order hold sampling of u
u(t) = u(ty) = u(k) , tx <7< trsr

Equidistant (periodic) sampling: tx,1 — tx = h = const

Compute:
the state-space model of the sampled (discrete time) system

Feb 2018
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Sampling ~ Sampled state-space model

Sampled state equations - 1

Use the solution of the continuous time state equation

x(t) = At x(tg) + / teA“—T)Bu(T)dT (%)

to

Substitute t = tx11 and to = tx with periodic sampling (h = (tx+1 — tk))

and 0 = 7 — ty.
With x(k) = x(tx) and x(k + 1) = x(tx+1) we obtain from ()

h
x(k +1) = eAhx(k) + e /0 =40 40 Bu(K)

Discrete time state equation

x(k +1) = eMx(k) + A7 (A" — 1) Bu(k)

Feb 2018
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Sampling ~ Sampled state-space model

Matrix functions

Given a univariate real function ¢ : R — R with a square matrix
A € R"™". Then p(A) is a square matrix ¢(A) € R™".

Matrix exponential function
Given A € R"*" and the real-valued exponential function e : R+— R
Take the Taylor-series expansion of e around t =0

1 1 .
et =14+t+-t>+.. .+t +..
2 j!
Substitute t = Aand 1 =/
1 1 .
eA:I+A+§A2+...+_—IAJ+... c R"™*"
J!

For any diagonal matrix A the matrix function (/) is easy to compute

M 0 .. 0 e(M) 0 .. 0

. 0 /\2 0 o 0 (p()\z) 0

N=1lyo o] M= 0 .. 0
0 ... .. A 0 e o(Np)
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Sampling ~ Sampled state-space model

Sampled state equations - 2

Discrete time state equation
x(k + 1) = e*x(k) + AL (e — 1) Bu(k)
DT-LTI state equation for sampled systems
x(k 4+ 1) = &x(k) + lu(k)
with
Ah?

d=etM=1+An+.. |, T=AYM-B= (/h+7+ )B
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DT-LTI system models = State-space models

DT-LTI state-space models

x(k +1) = dx(k) + Tu(k) (state equation)
y(k) = Cx(k) + Du(k) (output equation)

with given initial condition x(0) and
x(k) e R" | y(k) e RP | u(k) e R
being vectors of finite dimensional spaces and
SeR™" , TeR™ , CeRP", DeRP*

being matrices
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DT-LTI system models = State-space models

Solution of the DT-LTI state equation

x(1) = &x(0) + I'u(0)
x(2) = &x(1) + Tu(1) = ®2x(0) + dru(0) + u(1)
®x(2) + Tu(2) = ®3x(0) + P?ru(0) + ®ru(l) + Mu(2)

;;(k) = &x(k — 1)+ Tu(k — 1) = d¥x(0) + ZJ’-‘;(} S u())
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DT-LTI system models Pulse response function

Discrete time signals

u={u(k),k=0,1,...}

scalar valued discrete time signal: u(k) € R

Pulse signal (scalar valued): the discrete time analogue for the
Dirac-delta (unit impulse) signal

1 if k=0
u(k) = { 0 otherwise
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DT-LTI system models Pulse response function

DT-LTI SISO 1/0 system models — Pulse response function

From the solution of the state equation with D =0 and x(0) =0

x(k) = Ox(k — 1) + Tu(k — 1) = ®kx(0) + S5 Ok =1 u(j)
y(k) = Cx(k) = Cokx(0) + Y1y Cok=I=1Tu(j)

Pulse response function

0 k<1
h(k):{ COK-Ir k>1

The discrete time analogue of the impulse response function.
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DT-LTI system models Pulse response function

Transformation of the states

Consider the DT-LTI state-space model
x(k+1) = ®x(k)+Tu(k) , y(k) = Cx(k)+ Du(k)

with the state transformation X = Tx.
The parameters of the transformed model (another equivalent realization)

=767 !  T=7r, C=CT7!

Discrete time Markov parameters: CO<—1T

@ they are invariant for the state transformations

Feb 2018 19 / 25
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DT-LTI system models Pulse response function

Shift operators

Definition (forward shift operator q)

which acts on a discrete time signal as follows

gf (k) = f(k +1) (1)

Definition (backward shift operator (delay) g 1)

which acts on a discrete time signal as follows

q ' f(k) = f(k—1) (2)

@ The induced norm of an operator g on the vector space X induced
by a norm ||.|| on the same space is defined as
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DT-LTI system models Discrete difference equation models

DT-LTI SISO 1/O system models — Discrete difference

equation models

e Forward difference form with n, > n, (proper)
y(k+na)+aiy(k+na—1)+...+any(k) = bou(k+np)+ ...+ bn,u(k)
A(q)y(k) = B(q)u(k)

A(q)=q"™ +a1q™ '+ ...+ an, , B(q) = bog™ + b1g"™ " + ...+ by,

o Backward difference form where d = n, — np, > 0 is the pole excess
(time delay)

y(k)+ary(k—1)+...4an,y(k—n,) = bou(k—d)+...4+bn,u(k—d—np)

A (g7 )y(k) = B*(qHu(k — d)
A(q7h) = q™A(g™), B*(q7!) = q™B(q")
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DT-LTI system models Pulse transfer operator

DT-LTI SISO 1/O system models — Pulse transfer operator

@ Computed from the DT-LTI state-space model
x(k+1) = &x(k)+Tu(k) , y(k) = Cx(k)+ Du(k)
x(k 4+ 1) = gx(k) = dx(k) + Tu(k)
x(K) = (gl — ®) T u(k)
y(k) = Cx(k) + Du(k) = [C(ql — ®)7IT + D]u(k)
Pulse-transfer operator H(q) of the SSR (¢, T, C, D):
H(q) = C(ql —®)"'T + D

The discrete time analogue of the transfer function.
It is also invariant for the state transformation.
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DT-LTI system models Pulse transfer operator

DT-LTI SISO 1/O system models — Pulse transfer operator

e For SISO LTI systems H(q) is a rational function

B
H(q) = C(ql —®)7'T+ D = AEZi , deg B(q) < deg A(q) =n
where A(q) is the characteristic polynomial of the state matrix ®.

@ Relation with the discrete difference equation form

y(k+n)+aiy(k+n,—1)+ ...+ any(k) =
= bou(k + np) + ... + by, u(k)

A(q)y(k) = B(q)u(k)
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Poles of DT-LTI Systems
Poles of DT-LTI systems — 1

o Comparison

continuous time system discrete time system

state eq.  x(t) = Ax(t) + Bu(t) x(k+1) = dx(k)+ lu(k)

o = AP
output eq. y(t) = Cx(t) y(k) = Cx(k)
poles Ai(A) Ai(®)

Ai(®) = eti(Ah
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Poles of DT-LTI Systems

Poles of DT-LTI systems — 2
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