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Brief Papers 

Training Feedforward Networks with the Marquardt Algorithm 
Martin T. Hagan and Mohammad B. Menhaj 

Abstract- The Marquardt algorithm for nonlinear least 
squares is presented and is incorporated into the backpropagation 
algorithm for training feedforward neural networks. The 
algorithm is tested on several function approximation problems, 
and is compared with a conjugate gradient algorithm and a 
variable learning rate algorithm. It is found that the Marquardt 
algorithm is much more efficient than either of the other 
techniques when the network contains no more than a few 
hundred weights. I I I 
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I. INTRODUCTION Fig. 1. Three-layer feedforward network. 

INCE the backpropagation learning algorithm [ 11 was S first popularized, there has been considerable research 
on methods to accelerate the convergence of the algorithm. 
This research falls roughly into two categories. The first 
category involves the development of ad hoc techniques (e.g., 
[2]-[5]). These techniques include such ideas as varying the 
learning rate, using momentum and rescaling variables. An- 
other category of research has focused on standard numerical 
optimization techniques (e.g., [ 61-[ 91). 

The most popular approaches from the second category have 
used conjugate gradient or quasi-Newton (secant) methods. 
The quasi-Newton methods are considered to be more efficient, 
but their storage and computational requirements go up as the 
square of the size of the network. There have been some lim- 
ited memory quasi-Newton (one step secant) algorithms that 
speed up convergence while limiting memory requirements 
[&lo]. If exact line searches are used, the one step secant 
methods produce conjugate directions. 

Another area of numerical optimization that has been ap- 
plied to neural networks is nonlinear least squares [ 1 11-[ 131. 
The more general optimization methods were designed to 
work effectively on all sufficiently smooth objective functions. 
However, when the form of the objective function is known 
it is often possible to design more efficient algorithms. One 
particular form of objective function that is of interest for neu- 
ral networks is a sum of squares of other nonlinear functions. 
The minimization of objective functions of this type is called 
nonlinear least squares. 

Most of the applications of nonlinear least squares to neural 
networks have concentrated on sequential implementations, 
where the weights are updated after each presentation of an 
input/output pair. This technique is useful when on-line adap- 
tation is needed, but it requires that several approximations be 

This paper presents the application of a nonlinear least 
squares algorithm to the batch training of multi-layer percep- 
trons. For very large networks the memory requirements of 
the algorithm make it impractical for most current machines 
(as is the case for the quasi-Newton methods). However, for 
networks with a few hundred weights the algorithm is very 
efficient when compared with conjugate gradient techniques. 
Section I1 briefly presents the basic backpropagation algorithm. 
The main purpose of this section is to introduce notation 
and concepts which are needed to describe the Marquardt 
algorithm. The Marquardt algorithm is then presented in 
Section 111. In Section IV the Marquardt algorithm is compared 
with the conjugate gradient algorithm and with a variable 
learning rate variation of backpropagation. Section V contains 
a summary and conclusions. 

11. BACKPROPAGATION ALGORITHM 

Consider a multilayer feedforward network, such as the 

The net input to unit i in layer k + 1 is 
three-layer network of Fig. 1. 

S k  

, k + l ( i )  = E,&++'(. 2, j ) a k  . ( j )  + b k + ' ( i ) .  (1) 
j = 1  

The output of unit i will be 

For an M layer network the system equations in matrix form 
are given by 

ao = p  (3) 

,k+l = f k + + '  

k = 0,1 , .  . . , M  - 1. (4) 

made to the standard algorithms. The standard algorithms are 
performed in batch mode, where the weights are only updated 
after a complete sweep through the training set. 

The task of the network is to learn associations between a spec- 
ified set of input-output pairs { (p l  , tl , (p2 , t 2  , . . . (pQ , t~ 1 .  
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The performance index for the network is 

where is the output of the network when the qth input, 
p , is presented, and e, = t+ - %M is the error for the qth 
input. For the standard backpropagation algorithm we use an 
approximate steepest descent rule. The performance index is 
approximated by 

-? 

A 1  v = -eTe 
2-9 -9 

where the total sum of squares is replaced by the squared 
errors for a single input/output pair. The approximate steepest 
(gradient) descent algorithm is then 

d v  
a W"(i , j )  

Q w k ( i , j )  = -a 

av 
Q b k ( i )  = --cy- 

d bk(( i )  

where (Y is the leaming rate. Define 

(7) 

(9) 

as the sensitivity of the performance index to changes in the 
net input of unit i in layer k. Now it can be shown, using (l), 
(6) ,  and (9), that 

It can also be shown that the sensitivities satisfy the following 
recurrence relation 

- s k  = F k  ('k) wk+lT - sk++1 (12) 

where 

and 

This recurrence relation is initialized at the final layer 

- (15) 

The overall learning algorithm now proceeds as follows; first, 
propagate the input forward using (3)-(4); next, propagate the 
sensitivities back using (15) and (12); and finally, update the 
weights and offsets using (7), (8), (lo), and (11). 

6 M = - F " ( - M  
72 )(t, -aq) .  

111. MARQUARDT-LEVENBERG MODIFICATION 

While backpropagation is a steepest descent algorithm, the 
Marquardt-Levenberg algorithm [ 141 is an approximation to 
Newton's method. Suppose that we have a function V(:) 
which we want to minimize with respect to the parameter 
vector I, then Newton's method would be 

A: = -[V2V(~)]-'VV(:) (16) 

where V2V(:) is the Hessian matrix and VV(:) is the 
gradient. If we assume that V(:) is a sum of squares function 

N 

V(:) = e 3 4  (17) 

VV(:) = JT(:)e(:) (18) 

i=l 
then it can be shown that 

V2V(:) = JT(:)J(.) + S ( c )  (19) 

where J ( z )  is the Jacobian matrix 

and 
N 

For the Gauss-Newton method it is assumed that S ( g )  x 0, 
and the update (16) becomes 

A: = [JT(:>J(:)]- lJT(~)e(~:) .  (22) 

The Marquardt-Levenberg modification to the Gauss-Newton 
method is 

A: = [J'(z)J(:) + pI]-'JT(:)e(:). (23) 

The parameter p is multiplied by some factor (p) whenever 
a step would result in an increased V ( g ) .  When a step 
reduces V ( g ) ,  p is divided by p. (In Section IV we used 
p =0.01 as a starting point, with p=lO.) Notice that when 
p is large the algorithm becomes steepest descent (with step 
Up), while for small p the algorithm becomes Gauss-Newton. 
The Marquardt-Levenberg algorithm can be considered a trust- 
region modification to Gauss-Newton [8]. 

The key step in this algorithm is the computation of the 
Jacobian matrix. For the neural network mapping problem 
the terms in the Jacobian matrix can be computed by a 
simple modification to the backpropagation algorithm. The 
performance index for the mapping problem is given by (5). It 
is easy to see that this is equivalent in form to (1 7), where : = 

b'(SM)]' , and N = Q x S M .  Standard backpropagation 
calculates terms like 

[ w ~ ( l , l ) w ~ ( l , 2 ) . ~ ~ w ~ ( s l , ~ ) b ~ ( l ) ~ . ~ b ~ ( s l ) w ~ ( l , l ) ~ ~ ~  

av 
dW"(i,j) 

S M  
3 c 

m=l 

dwk( i , j )  ' 
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For the elements of the Jacobian matrix that are needed for 
the Marquardt algorithm we need to calculate terms like 

These terms can be calculated using the standard backpropa- 
gation algorithm with one modification at the final layer 

Note that each column of the matrix in (26) is a sensitivity 
vector which must be backpropagated through the network to 
produce one row of the Jacobian. 

A. Summary 

rithm thus proceeds as follows: 
The Marquardt modification to the backpropagation algo- 

Present all inputs to the network and compute the 
corresponding network outputs (using (3) and (4)), and 
errors (q = & - %M). Compute the sum of squares of 
errors over all inputs (V(zJ). 
Compute the Jacobian matrix (using (26), (12), (lo), 
(11>, and (20) ). 
Solve (23) to obtain A:. (For the results shown in the 
next section Cholesky factorization was used to solve 
this equation.) 
Recompute the sum of squares of errors using : + A:. 
If this new sum of squares is smaller than that computed 
in step 1, then reduce p by p, let 2 = 9 + A:, and go 
back to step 1. If the sum of squares is not reduced, then 
increase p by p and go back to step 3. 
The algorithm is assumed to have converged when the 
norm of the gradient ((18)) is less than some prede- 
termined value, or when the sum of squares has been 
reduced to some error goal. 

IV. RESULTS 

The Marquardt backpropagation algorithm (MBP), as de- 
scribed in the previous section, was tested on five function 
approximation problems. To provide a basis for comparison, 
two other modifications to backpropagation were also applied 
to the same problems: backpropagation with variable learning 
rate (VLBP) [2], and conjugate gradient backpropagation 
(CGBP). For the purposes of this study we used the Fletcher- 
Reeves version of the conjugate gradient algorithm [15, pp. 
73-84], with an exact line search. The line search consisted of 
two parts: interval location, using function comparison [ 15, pp. 
41421 and a golden section search [15, pp. 31-32]. It should 
be noted that there are a number of decisions to be made 
in the implementation of the conjugate gradient algorithm, 
including the precision and the type of line search and the 
choice of the number of steps before the search direction 
is reinitialized to the gradient direction (typically chosen to 
be equal to the number of parameters, see [15]). We took 
some care in making these decisions, but there is no guarantee 
that our implementation is optimal. However, we found that 
the basic trends described in the examples to follow were 
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Fig. 2. Network convergence for sine wave (sum of squares vs. epoch). 

not sensitive to modifications in the implementation of the 
conjugate gradient algorithm. 

A. Problem # I :  Sine Wave 
For the first test problem a 1-15-1 network, with a hidden 

layer of sigmoid nonlinearities and a linear output layer, was 
trained to approximate the sinusoidal function 

y = 1/2 + 1/4sin(37rx) 

using MBP, CGBP and VLBP. Fig. 2 displays the training 
curves for the three methods. The training set consisted of 40 
inpudoutput pairs, where the input values were scattered in the 
interval [-1,1]; and the network was trained until the sum of 
squares of the errors was less than the error goal of 0.02. The 
curves shown in Fig. 2 are an average over 5 different initial 
weights. The initial weights are random, but are normalized 
using the method of Nguyen and Widrow [16]. 

A comment is appropriate at this point on the shape of the 
learning curve for CGBP. Note that there is a plateau followed 
by a steep curve. The plateau ends at the point when the search 
direction is re-initialized to the gradient direction (when the 
number of steps is equal to the number of parameters), and the 
plateau only occurs once. When we reset the search direction 
more often the plateau was shortened, but the steepness of the 
subsequent slope was reduced, and the overall convergence 
rate was not improved. We found that the plateau could be 
eliminated by using the gradient direction for the first few 
steps and then using the conjugate gradient algorithm, but this 
made only a small difference in overall convergence rate. 

Fig. 2 provides only limited information, since the three 
algorithms do not have the same number of floating point op- 
erations for each iteration. The first line of Table 1 summarizes 
the results, showing the number of floating point operations 
required for convergence. Notice that CGBP takes more than 
nine times as many flops as MBP, and VLBP takes almost 45 
times as many flops. 

B.  Problem #2: Square Wave 
Fig. 3 illustrates the second test problem, in which the same 

1-15-1 network is trained to approximate a square wave. 
Fig. 4 displays the average leaming curves (5 different initial 
weights), and line 2 of Table I summarizes the average results. 
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TABLE I1 
NUMBER OF FLOPS REQUIRED FOR CONVERGENCE 

VT.RP CGRP MBP 

-2 ' I 
-3 -2 -1 0 1 2 3 

Function approximation, problem #2. Fig. 3. 
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Network convergence for square wave (sum of squares vs. epoch). 

(a) (b) 

Fig. 5. 
function, (b) network response. 

Function approximation, problem #3, and network response; (a) sinc 

Note that CGBP takes more than four times as many flops as 
MBP, and VLBP takes more than 65 times as many flops. 

C. Problem #3: 2-0  Sinc Function 
Fig. 5(a) illustrates the third test problem. In this case a 

2-15-1 network is trained to approximate a two-dimensional 
sinc function. Fig. 6 displays the average learning curves (3 
different initial weights), and line 3 of Table I summarizes 
the average results (error goal of 0.5 with 289 input/output 
sets). The CGBP algorithm takes more than 7 times as many 
flops as MBP, and VLBP takes more than 27 times as 
many flops. These differences in convergence time became 
more pronounced as the error goal was reduced, but the 
time required for convergence of VLBP made multiple runs 
impractical. Fig. 5(b) illustrates the network response, after 
training with MBP to an error goal of 0.02. 

Sine Wave 8.42 x 10' 1.75 x 10' 1.89 x lo6  

Square Wave 2.28 x 109 1.49 x 3.48 x 10' 
2-D Sinc 2.94 x 109 7.67 x lox 1.07 x l o8  
4-D Test - 7.71 x io9 1.97 x i o 9  
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Fig. 6. 
epoch). 

Network convergence for 2-D sinc function (sum of squares vs. 
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Fig. 7. 
epoch). 

Network convergence for 4-D test function (sum of squares vs. 

D. Problem #4: 4-0  Function 
The fourth test problem is a four input-single output function 

= ~ i n ( 2 ~ 2 ~ ) 2 ~ 2 ~ ~ ~ ~ - ( ~ l f 2 " + 5 3 + ~ 4 )  (27) 

For this example a 4-50-1 network (301 parameters) is trained 
to approximate (27), where the input values were scattered 
in the interval [-1,1]; and the network was trained until the 
sum of squares of the errors (over 400 input/output sets) was 
less that the error goal of 0.5. Fig. 7 displays the average 
learning curves (3 different initial weights), and line 4 of Table 
I summarizes the average results. The CGBP algorithm takes 
approximately four times as many flops as MBP (VLBP was 
not applied to this problem because of excessive training time) 

E.  Example Set Scaling 

In order to investigate the effect of sample size on the 
efficiency of the algorithm, MBP and CGBP were used to 
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Fig. 8. FLOPS required for convergence versus sample size. 
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Fig. 9. FLOPS required for convergence versus error goal. 

train a 1-10-1 network to approximate the function 

y = sin(.rr/2z) (28) 

over the interval -1< z <l. The size of the training set was 
varied from 100 points to 1600 points, and the network was 
trained until the mean square error was less than 2 x 
Fig. 8 displays the number of flops required for convergence, 
as a function of the sample size. The curves represent an 
average over 10 different initial conditions. From this figure 
we can see that the effect is linear, both for MBP and CGBP. 
MBP is approximately 16 times faster than CGBP for each 
sample size. 

F.  Accuracy Requirements 

We noted that the difference between the performances of 
MBP and CGBP became more pronounced as higher preci- 
sion approximations were required. This effect is illustrated 
in Fig. 9. In this example a 1-10-1 network is trained to 
approximate the sine wave of (28). The sample size is held 
constant at 100 points, but the mean square error goal is halved 
in steps from 2 x lop4 to 1.6 x Fig. 9 displays the 
number of flops required for convergence, as a function of the 
error goal, for both MBP and CGBP. The curves represent an 
average over 10 different initial conditions. With an error goal 
of 2 x MBP is 16 times faster than CGBP. This ratio 
increases as the error goal is reduced; when the error goal is 
1.6 x lop6, MBP is 136 times faster than CGBP. 

V. CONCLUSION 
Many numerical optimization techniques have been success- 

fully used to speed up convergence of the backpropagation 
learning algorithm. This paper presented a standard nonlinear 
least squares optimization algorithm, and showed how to 
incorporate it into the backpropagation algorithm. The Mar- 
quardt algorithm was tested on several function approximation 
problems, and it was compared with the conjugate gradient 
algorithm and with variable learning rate backpropagation. The 
results indicate that the Marquardt algorithm is very efficient 
when training networks which have up to a few hundred 
weights. Although the computational requirements are much 
higher for each iteration of the Marquardt algorithm, this is 
more than made up for by the increased efficiency. This is 
especially true when high precision is required. 

The authors also found that in many cases the Marquardt 
algorithm converged when the conjugate gradient and variable 
learning rate algorithms failed to converge. For example, in 
problem #2 (Fig. 3) if we used five neurons in the hidden layer 
the CGBP and VLBP algorithms almost never converged to an 
optimal solution. The MBP algorithm converged to an optimal 
solution in 50% of the tests, and in less time than was required 
for the network with 15 hidden neurons. 
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