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A simple dynamical model of an induction motor is derived and analyzed in this paper based on engineering principles that
describe the mechanical phenomena together with the electrical model. The used state space model consists of nonlinear
state equations. The model has been verified under the usual controlled operating conditions when the speed is controlled.
The effect of load on the controlled induction motor has been analyzed by simulation. The sensitivity analysis of the
induction motor has been applied to determine the model parameters to be estimated.
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Introduction

Induction motors (IM) are the most commonly used elec-
trical rotating machines in several industrial applications.
Irrespective of size and the application area, these motors
share the most important dynamical properties, and their
dynamical models have a similar structure.

Because of the specialties and great practical impor-
tance of IMs in industrial applications, their modelling
for control purposes is well investigated in the literature.
Besides basic textbooks [1-3], there are several papers
that describe the modelling and use the developed mod-
els for the design of different types of controllers: vec-
tor control [1, 4], sensorless vector control [5] and direct
torque control (DTC) [6]. The aim of this paper is to build
a simple dynamical model of the IM and to perform its
parameter sensitivity analysis. The results of this analy-
sis will be the basis of the next step since the final aim
of our study is to estimate the parameters of the IM and
design a controller that can control the speed and torque
of the IM. The state space model has been implemented
in the Matlab/Simulink environment which enables us to
analyze the parametric sensitivity based on simulation ex-
periments.

Nonlinear Model of an Induction Motor

In this section a state space model of an induction mo-
tor (IM) is presented. The model development is largely
based on Refs.[1, 8-10]. For constructing the IM model,
the following modelling assumptions are made:

1. a symmetrical triphase stator winding system is as-
sumed,

2. the flux density is radial in the air gap,
3. the copper loss and the slots in the machine can be

neglected,
4. the spatial distribution of the stator fluxes and aper-

tures wave are considered to be sinusoidal,
5. stator and rotor permeability are assumed to be infi-

nite with linear magnetic properties.
According to the above modelling conditions the

mathematical description of the IM is developed through
the space-vector theory. If the voltage of the stator is pre-
sumed to be the input excitation of the machine, then the
spatial distribution along the stator of the x phase volt-
age can be described by the complex vector vsx(t). We
can determine the orientation of the voltage vector vs, the
direction of the respective phase axis and the voltage po-
larity.

is(t) =
2

3

(
a0 · isa(t) + a1 · isb(t) + a2 · isc(t)

)
=
√
2 · ieff(t) · ejω0t+

π
2 +ϕi , (1)

where a is the ej120o vector and isa, isb and isc are the
following:

isa(t) = Re(a0 · is(t)) = Re(is(t)),

isb(t) = Re(a2 · is(t)), and

isc(t) = Re(a1 · is(t)).

In Eq.(1), 2/3 is the normalizing factor. The flux den-
sity distribution can be obtained by integrating the cur-
rent density wave along the cylinder of the stator. The
flux linkage wave is a system variable, because it con-
tains detailed information about the winding geometry.
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Figure 1: The equivalent circuit of the IM

The rotating flux density wave induces voltages in the in-
dividual stator windings. Thus stator voltage vs(t) can be
represented as the overall distributed voltages in all phase
windings:

vs(t) =
2

3

(
a0 · vsa(t) + a1 · vsb(t) + a2 · vsc(t)

)
=
√
2 · veff(t) · ejω0t+

π
2 +ϕu , (2)

where a is the ej120o vector and isa, isb and isc are the
following:

vsa(t) = Re(a0 · us(t)) = Re(us(t)),

vsb(t) = Re(a2 · us(t)), and

vsc(t) = Re(a1 · us(t)).

Considering the stator of the IM as the primer side of the
transformer, then using Kirchoff’s voltage law the follow-
ing equation can be written (Fig.1):

vs(t) = is(t) ·Rs +
dφs(t)

dt
. (3)

As for the secondary side of the transformer, it can be
deduced that the same relationship is true for the rotor
side space vectors:

vr(t) = ir(t) ·Rr +
dφr(t)

dt
= 0. (4)

Eqs.(3) and (4) describe the electromagnetic interaction
as the connection of first order dynamical subsystems:

φs(t) = is(t) · Ls + ir(t) · Lm, and (5)

φr(t) = is(t) · Lm + ir(t) · Lr. (6)

Since four complex variables (is(t) , ir(t) , φs(t) , and
φr(t)) are presented in Eqs.(5) and (6), flux equations are
needed to complete the relationship between them.

The mechanical power (Pmech(t)) of the IM can be
defined as:

Pmech(t) =
Wmech(t)

dt
, (7)

where the mechanical energy (Pmech(t)) in the rotating
system can be given by the following expression:

Pmech(t) =
Wmech(t)

dt
= Tmech(t) · ωr, (8)

where Te(t) is the torque and ωr is the angular velocity
of the IM. Afterwards the energy balance of the IM is as
follows:

We =Wmech +WR +WField, (9)

Figure 2: The equivalent circuit of the d-axis of the IM

Figure 3: The equivalent circuit of the q-axis of the IM

where

Pe =
We(t)

dt
=

3

2
Re (us · is + ur · ir) (10)

is the input electrical power,

PR =
WR(t)

dt
=

3

2
Re
(
Rs · |is|2 +Rr · |ir|2

)
(11)

represents the resistive power losses and

PField =
WField(t)

dt
=

3

2
Re

(
dφs

dt
is +

dφr

dt
ir

)
(12)

is the air gap power. Using Eqs.(8-12),

Pmech(t) = Tmech(t) · ωr =
3

2
· Lm

Lr
· φs(t)× is(t), and

(13)
Te = 1.5p · (φdsiqs − φqsids). (14)

The equivalent circuit of the IM can be decomposed to di-
rect axis and quadratic axis components by Park’s trans-
formation as shown in Figs.2 and 3.

The actual terminal voltage v of the windings can be
written in the form

v = ±
J∑

j=1

(Rj ij)±
J∑

j=1

(
dφj
dt

)
, (15)

where ij are the currents, Rj are the winding resistances,
and φj are the flux linkages. The positive directions of
the stator currents point out of the IM terminals.

By composing the d and q axes of the IM the follow-
ing equations can be written:

vqs = Rs · iqs +
φqs

dt
+ ω · φds, (16)

vds = Rs · ids +
φds

dt
− ω · φqs, (17)

vqr = R′r · i′ds +
φ′dr

dt
+ (ω − ωr) · φ′dr, and (18)

vdr = R′r · i′dr +
φ′dr

dt
− (ω − ωr) · φ′qr. (19)
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Figure 4: Response to the step change of the
speed-controlled IM

dωm

dt
=

1

2H
(Te − F · ωm − Tmech) (20)

where ω is the reference frame angular velocity, ωr is the
electrical angular velocity,

φqs = Ls · iqs + Lmi
′
qr, (21)

φds = Ls · ids + Lmi
′
dr, (22)

φqr = Lr · i′qr + Lmi
′
qs, and (23)

φdr = Lr · i′dr + Lmi
′
ds. (24)

The above model can be written in state space form by ex-
pressing the time derivative of the fluxes and ω from the
voltage and swing equations Eqs.(21-24). The nonlinear
state space model of the IM is given by Eqs.(25-29):

dφqs

dt
=

−Rs

Ls − L2
m

L′
r

· φqs
Rs · Lm

L′r(Ls − L2
m

L′
r
)
· φ′qr

− ω · φds + vqs, (25)

dφds

dt
=

−Rs

Ls − L2
m

L′
r

· φds +
Rs · Lm

L′r(Ls − L2
m

L′
r
)
· φ′dr

− ω · φqs + vds, (26)

dφ′qr

dt
=

−R′r
Lm − L′

r·Ls

Lm

· φqs

+
−R′r · Ls

Lm · (Lm − L′
r·Ls

Lm
)
· φ′qr

− ω · φ′dr + ωr · φ′dr + vqr, (27)

dφ′dr

dt
=

−R′r
Lm − L′

r·Ls

Lm

· φds

+
−R′r · Ls

Lm · (Lm − L′
r·Ls

Lm
)
· φ′dr

+ ω · φ′qr − ωr · φ′qr + vdr, and (28)

dωr

dt
=

1

2H
· 1.5 · p · Lm

Lm · (Ls − L2
m

L′
r
)
· φ′dr · φqs

− 1

2H
· 1.5 · p · Lm

Lm · (Ls − L2
m

L′
r
)
· φ′qr · φds

− F

2H
· ωr −

Tm

2H
. (29)

The state vector of the above model is
x=[φqs, φds, φ

′
qr, φ

′
dr, ωr]

T ∈ R5, and the input
variables are organized in terms of the the input vector
u=[vq, vd, −Tmech]

T ∈ R3. It is assumed that all the
state variables can be measured i.e. y = x.

Model Validation

The dynamical properties of the IM have been investi-
gated. The response of the speed-controlled motor has
been tested under step-like changes. The simulation re-
sults are shown in Fig.4, where the fluxes (φqs , φds, φ′qr,
and φ′dr) and the angular velocity (ω) are shown.

Model Analysis

The above model Eqs.(21-24) has been verified by simu-
lation against engineering intuition.

Local Stability Analysis

As the final aim of our research is to estimate the param-
eters of a particular Grundfos IM, first of all the resis-
tances (Rs and Rr) of the IM were measured. Afterwards
the values of the inductances (Lls, Llr and Lm) and the
mechanical parameters (H and F ) of a similar IM with
similar Rs and Rr found in the literature have been used.
The parameters used during the model and the sensitivity
analyses are the following:

Rs = 0.196 Ohm

Rr = 0.0191 Ohm

Lls = 0.0397 H

Llr = 0.0397 H

Lm = 1.354 H

H = 0.095

F = 0.0548

p = 1 (30)
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Figure 5: The model state variables for a ±50% change
of Lm

It can easily be seen that the IM model is nonlinear since
there are products of two state variables in the following
equations:
• Eq.(27): φ′dr is multiplied by ωr

• Eq.(28): φ′qr is multiplied by ωr

• Eq.(29): φ′dr is multiplied by φqs

• Eq.(29): φ′qr is multiplied by φ′ds

For the local stability analysis we have to calculate the
eigenvalues of the system. The examined equilibrium
point is

φqs = −0.744 Vs

φds = 1.0287 Vs

φ′qr = −0.174 Vs (31)
φ′dr = −0.087 Vs

ωr = 48.477 s−1

The numerical value of the Jacobian of the nonlin-
ear model (i.e. the state matrix of the locally linearized
model) is as follows:
−2.504 −50 2.4328 0 0

50 −2.504 0 2.4328 0
0.2370 0 −0.244 −1.522 0

0 0.2370 1.5222 −0.244 0
−8.617 17.077 0 0 −0.288

 .
(32)

The eigenvalues of the state matrix of the linearized sys-
tems are:

λ1,2 = −2.504 ± j49.98,
λ3,4 = −0.243 ± j1.534, and
λ5 = −0.288

(33)

Figure 6: The model state variables for a ±50% change
in Rs

It is apparent that the real parts of the eigenvalues are
negative with small magnitudes.

Parameter Sensitivity Analysis

the sensitivity of the nonlinear model to the mutual induc-
tance has been investigated. The steady state value of the
system variables does not change (as is apparent in Fig.5)
even for a considerably large change in Lm. Sensitivity
analysis of the inductances Llr, Lls of the stator and ro-
tor, resistances of the stator Rs and the damping constant
F has also been investigated. In this investigation it can
be seen that the values of the state variables were changed
a bit, as shown in Fig.6.

The analysis of the resistances of the rotor R′r and the
inertia H of the rotor showed that every value of the state
variables changed significantly, as shown in Fig.7.

As a final result of the sensitivity analysis, we can de-
fine the following groups of parameters:
• Not sensitive: Mutual inductance Lm. Since the state

space model of interest is insensitive in this respect,
the values of this parameter cannot be reliably deter-
mined from measurement data using any parameter
estimation method.
• Sensitive: These sensitive parameters are candidates

for parameter estimation.
– Less: inductances Llr and Lls, resistance of the

stator Rs and the damping constant F .
– More: resistances of the rotor R′r and the iner-

tia H of the rotor.
• Critically sensitive: none.
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Figure 7: The model state variables for a ±50% change
in H

Conclusion

The simple nonlinear dynamical model of an IM has been
investigated in this paper. It has been shown that the
model is locally asymptotically stable with regards to a
physically meaningful equilibrium state. The effect of the
controlled generator has been analyzed by simulation us-
ing a traditional PI controller. It has been found that the
controlled system is stable and can follow the set-point
changes. Seven parameters of the model were selected for
sensitivity analysis, and the sensitivity of the state vari-
ables has been investigated. As a result, the parameters
were partitioned into three groups. Based on the results
presented here, a future aim is to estimate the parameters
of the model for a real system from measurements. The
sensitivity analysis enables us to select the candidates for
estimation that are inductances Llr and Lls, resistances
Rs and Rr, the damping constant F and the inertia H .
An additional future aim is to develop a model for con-
trol purposes and investigate different controllers before
applying them on real systems.
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SYMBOLS

C1, C2, C3 constant
F damping constant
φqs and φds q and d components of the stator flux
φ′qr and φ′dr q and d components of the reduced rotor flux
H inertia constant
iqs and ids q and d components of the stator current
i′qr and i′dr q and d components of the reduced rotor current
Lm mutual inductance
p number of pole pairs
Rr and Lr rotor resistance and inductance
R′r and L′r reduced value of rotor resistance and inductance
Rs and Ls stator resistance and inductance
vd and vq q and d components of the stator voltage
ω angular velocity of the magnetic field
ωr angular velocity of the rotor
Tmech mechanical torque
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