Advanced parameter estimation Evaluating the quality of the estimates obtained by optimization

Katalin Hangos

University of Pannonia Faculty of Information Technology Department of Electrical Engineering and Information Systems

hangos.katalin@virt.uni-pannon.hu

March 2019

Parameter estimation using optimization - a repetition

2 Analysing the residuals/prediction errors

- Residual in the SISO case
- Multiple output case

3 Analysing the covariances of the estimates

- Basic LTI case
- Nonlinear case

The prediction error

The prediction error series can be computed from the measured variables and the model output:

$$\varepsilon(k,p) = y(k) - \hat{y}(k|p)$$
 $k = 1, \dots, N$

Principle of parameter estimation: A parameter estimation method generates an estimated parameter from the measured data :

$$D^N o \hat{p}_N$$

The model is "good", i.e. the estimated parameters are "good" if the prediction errors are "small".

Magnitude of the prediction error The "size" of the prediction error series $\varepsilon(k, p)$ is measured using an appropriate signal norm.

Minimizing the prediction error

Parameter estimation method: $D^N
ightarrow \hat{p}_N$

The general parameter estimation problem : Given:

- measured data: $D[1, N] = D^N = \{(y(k), u(k)) \mid k = 1, ..., N\}$
- predictive parametrized model $\hat{y}(k|p) = g(k, D[1, k-1]; p)$ prediction error series (discrete time signal): $g(k, p) = y(k) = \hat{y}(k|p) = k = 1$
 - $\varepsilon(k,p) = y(k) \hat{y}(k|p)$ $k = 1, \dots, N$
- norm of the prediction error (objective function) 2-norm, Least Squares: $V_{LS}(p, D^N) = \frac{1}{N} \sum_{k=1}^{N} w_k(\varepsilon(k, p))^2$ w_k are positive scalar-valued weights, normally $w_k = 1$

Important

From the known D^N measurements and the p parameter vector we can compute the value of the $V_N(p, D^N)$ norm, that is minimized by the estimated \hat{p}_N parameter vector.

Overview

Parameter estimation using optimization - a repetition

2 Analysing the residuals/prediction errors

- Residual in the SISO case
- Multiple output case

3 Analysing the covariances of the estimates

The residuals in the SISO case

Residual: realization of the prediction error series

$$arepsilon(k, heta) = y(k) - \hat{y}(k| heta) \ , \ k = 1, \dots, N$$

Basic case: ARX model (SISO LTI): the output noise is white

$$A^*(q^{-1}) \cdot y(k) = B^*(q^{-1}) \cdot u(k) + e(k)$$

Predictive form of the model:

$$\hat{y}(k|p) = -a_1 \cdot y(k-1) \dots - a_n \cdot y(k-n) + b_0 \cdot u(k) + \dots + b_m \cdot u(k-m)$$
Parameter vector: $p = [-a_1 - a_2 \dots - a_n \ b_0 \ b_1 \dots \ b_m]^\top$
Prediction error (white noise!):

$$\varepsilon(k) = \hat{y}(k|p) - y(k) = e(k)$$

Important

For an unbiased estimation in the SISO LTI case, the residuals are uncorrelated and have 0 mean.

K. Hangos (University of Pannonia)

Example: quality of the estimate, prediction error

Measured and model computed (predicted) data

The residuals in the MO case

Residuals: defined component wise (individually) for y_i , $i = 1, ..., \ell$

$$arepsilon_i(k, heta) = y_i(k) - \hat{y}_i(k| heta) \ , \ k = 1, \dots, N$$

Basic case: component wise ARX (LTI) model: for an unbiased estimation the residuals are uncorrelated and have 0 mean component-wise

- for component wise independent models the residuals should be independent of each other, too
- for correlated individual models this is not true

Important

Most often the components of the output are not equally important and/or of different quality (e.g. measurement precision)

Example: quality of the estimate in the MO case

Measured and model computed (predicted) data

Overview

Parameter estimation using optimization - a repetition

2 Analysing the residuals/prediction errors

3 Analysing the covariances of the estimates

- Basic LTI case
- Nonlinear case

Analysing the covariances of the estimates Basic

Basic LTI case

Multivariate Gaussian distribution – repetition

Level sets are ellipses - confidence regions

The parameter estimates in the LTI case

Basic case: ARX model (SISO): the output noise is white and Gaussian

$$A^*(q^{-1}) \cdot y(k) = B^*(q^{-1}) \cdot u(k) + e(k)$$

Parameter vector: $p = [-a_1 - a_2 \dots - a_n \ b_0 \ b_1 \dots \ b_m]^\top$

Important

For an unbiased estimate in the SISO LTI case, the estimate \hat{p}_{LS} has a Gaussian distribution $\mathbb{N}(p, \Sigma)$, where the estimate of the covariance matrix Σ is

$$C\hat{O}V\{\hat{p}_{LS}\} = \lambda_0 \cdot \left[\frac{1}{N}\sum_{k=1}^{N}\varphi(k)\cdot\varphi^{\top}(k)\right]^{-1}$$

Analysing the covariances of the estimates Basic LTI case

Quality of the estimate in the parameter space – LTI case

Analysis of the covariance matrix Estimate of the covariance matrix:

$$R(N) = rac{1}{N} \sum_{k=1}^{N} arphi(k) arphi^{\mathsf{T}}(k) \Delta_{arepsilon}$$

For a 'good' estimate, the parameter values are **uncorrelated** with **small variances**

Minimizing the prediction error by direct optimization

Method of parameter estimation: $D^N \rightarrow \hat{p}_N$

The general task of parameter estimation: Given

- measured values: $D[1, N] = D^N = \{(y(k), u(k)) \mid k = 1, ..., N\}$
- parametrized predictive model: $\hat{y}(k|p) = g(k, D[1, k-1]; p)$ sequence of prediction errors (discrete-time signal): $\varepsilon(k,p) = y(k) - \hat{y}(k|p)$, $k = 1, \dots, N$

• norm defined on the prediction error (2-norm,

LS):
$$V_{LS}(\theta, D^N) = \frac{1}{N} \sum_{k=1}^{N} (\varepsilon(k, p))^2$$

Compute:

The estimated parameter \hat{p}_N is specified in the time instant k = N so that

$$\hat{p}_{LS} = \hat{p}_{LS}(D^N) = \arg\min_p V_{LS}(p, D^N)$$

The optimum is determined by direct optimization, e.g. by using gradient method.

K. Hangos (University of Pannonia)

Example: estimated confidence regions

