INTELLIGENT CONTROL SYSTEMS Qualitative modelling

Katalin Hangos

Department of Electrical Engineering and Information Systems

Oct 2020

Lecture overview

Sign and interval calculus

- Sign addition and multiplication
- Interval operations

2 The notion of qualitative models

3 Signed Directed Graph (SDG) models

- Structure graph
- Diagnostic reasoning

4 Confluences

- Derivation and solution of confluences
- Rule generation from confluences

Qualitative difference equations

- The derivation and solution of QDEs
- Rule generation from QDEs

Sign and interval calculus

Sign and interval calculus

- Sign addition and multiplication
- Interval operations

2 The notion of qualitative models

3 Signed Directed Graph (SDG) models

4 Confluences

5 Qualitative difference equations

Discrete range spaces

Universe: the range space of variables = a set of intervals

• General qualitative: real intervals with fixed or free endpoints

$$U_{\mathcal{I}} = \{ [a_{\ell}, a_{u}] \mid a_{\ell}, a_{u} \in \mathcal{R}, a_{\ell} \leq a_{u} \}$$

with the landmark set

$$\mathcal{L}_{\mathcal{I}} = \{ \mathbf{a}_i \mid \mathbf{a}_i \leq \mathbf{a}_{i+1} , \ i \in \mathcal{I} \subseteq \mathcal{N} \}$$

sign-valued case

$$U_{S} = \{ +, -, 0; ? \} , ? = + \cup 0 \cup - L_{S} = \{ a_{1} = -\infty, a_{2} = 0, a_{3} = \infty \}$$

• logical (extended)

$$\mathit{U}_{\mathcal{L}} \;=\; \{ \; \mathsf{true} \;, \; \mathsf{false} \;; \; \mathsf{unknown} \; \}$$

Algebra over the sign universe

Operations: with **usual algebraic properties** (commutativity, associativity, distributivity)

- sign addition (\oplus_S) and substraction (\odot_S)
- sign multiplication (\otimes_S) and division
- composite operations and functions

Specification (definition) of a sign operation is done by using **operation tables**.

Recall - Logical operations

Operation table of the **implication** (\rightarrow) operation:

• used for describing **rules**

a ightarrow b		
$a\downarrow b ightarrow$	false	true
false	true	true
true	false	true

Sign addition

Operation table

$a \oplus_S b$	+	0	_	?
+	+	+	?	?
0	+	0	—	?
-	?	_	—	?
?	?	?	?	?

Properties:

- Growing uncertainty
- commutative

NOTES

Properties of sign addition: "inherited" from the properties of the "usual" addition

- commutativity : implies the symmetry of the operation table (around the main diagonal)
- null element (0): $a \oplus_S 0 = 0 \oplus_S a = a$
- operand monotonicity : if a₁ ≤ a₂ then (a₁ ⊕_S b) ≤ (a₂ ⊕_S b), holds for both operands

Sign multiplication

Operation table

$a \otimes_S b$	+	0	_	?
+	+	0	_	?
0	0	0	0	0
—	-	0	+	?
?	?	0	?	?

Properties:

- correcting by zero values
- commutative

NOTES

Properties of sign multiplication: "inherited" from the properties of the "usual" multiplication

- commutativity : implies the symmetry of the operation table (around the main diagonal)
- null element (0): $a \otimes_S 0 = 0 \otimes_S a = 0$
- operand monotonicity : if a₁ ≤ a₂ then (a₁ ⊗_S b) ≤ (a₂ ⊗_S b), holds for both operands
- unit element (+): $a \otimes_S + = + \otimes_S a = a$

Interval operations – 1

Operation on intervals with *fixed* endpoints

• Set-type definition: the sum (or product) of two intervals $\mathcal{I}_1 = [a_{1\ell}, a_{1u}]$ and $\mathcal{I}_2 = [a_{2\ell}, a_{2u}]$ from $U_{\mathcal{I}}$ is the smallest interval from $U_{\mathcal{I}}$ which covers the interval

$$\mathcal{I}^* = \{ \hspace{0.1cm} b = \mathsf{a}_1 \hspace{0.1cm} \mathsf{op} \hspace{0.1cm} \mathsf{a}_2 \mid \mathsf{a}_1 \in \mathcal{I}_1 \hspace{0.1cm}, \hspace{0.1cm} \mathsf{a}_2 \in \mathcal{I}_2 \}$$

• Endpoint-type definition: for *monotonic operations* we can compute the above as

$$E_{op} = \{ e_{\ell\ell} = a_{1\ell} \text{ op } a_{2\ell} , e_{\ell u} = a_{1\ell} \text{ op } a_{2u} , \\ e_{u\ell} = a_{1u} \text{ op } a_{2\ell} , e_{uu} = a_{1u} \text{ op } a_{2u} \} \\ \text{with} \quad \mathcal{I}^* = [\min E_{op}, \max E_{op}]$$

where E_{op} is formed from the endpoints

Interval operations – 2

Unusual properties caused by the fact that \mathcal{I}^* *should be covered* by an interval from $U_\mathcal{I}$

- growing uncertainty with every operation
- lack of distributivity: the result may depend on the algebraic form *minimum number of addition is the best*

NOTES

The growing uncertainty is illustrated with the figure below.

Order of magnitude intervals

Universe

Iandmark set:

$$\mathcal{L}_{\mathcal{OM}} = \{ a_1 = -\infty \ , \ a_2 = -A \ , \ a_3 = 0 \ , \ a_3 = A \ , \ a_4 = \infty \}$$

• atomic intervals:

$$LN = [-\infty, -A), SN = [-A, 0), 0 = [0, 0], SP = (0, A], LP = (A, \infty]$$

$$U_{\mathcal{OM}} = \{ LN , SN , 0 , SP , LP \}$$

Non-atomic intervals and operations

• pseudo-intervals: $[SP, LP] = (0, \infty]$ or $[LN, LP] = [-\infty, \infty]$

• operations:
$$LP \oplus_{OM} LN = [LN, LP]$$

Order of magnitude addition

Operation table of the order of magnitude interval addition

$a \oplus_{OM} b$	LN	SN	0	SP	LP
LN	LN	LN	LN	[<i>LN</i> , <i>SN</i>]	[LN, LP]
SN	LN	[<i>LN</i> , <i>SN</i>]	SN	[<i>SN</i> , <i>SP</i>]	[SP, LP]
0	LN	SN	0	SP	LP
SP	[<i>LN</i> , <i>SN</i>]	[<i>SN</i> , <i>SP</i>]	SP	[SP, LP]	LP
LP	[LN, LP]	[SP, LP]	LP	LP	LP

NOTES

Properties of order of magnitude addition: "inherited" from the properties of the "usual" addition (see the *properties of sign addition*!)

- commutativity : implies the symmetry of the operation table (around the main diagonal)
- null element (0): $a \oplus_{OM} 0 = 0 \oplus_{OM} a = a$
- operand monotonicity : if a₁ ≤ a₂ then (a₁ ⊕_{OM} b) ≤ (a₂ ⊕_{OM} b), holds for both operands

Important

The growing uncertainty is seen from the non-atomic entries in the table

Normalized intervals

Qualitative range space: for variables with "normal" N value

$$Q = \{H, N, L, 0\}, \ B = \{0, 1\}, \ Q_E = \{H, N, L, 0, e+, e-\}$$

Intervals with non-fixed endpoints to avoid growing uncertainty Operation table for interval addition

0	L	Ν	Н
0	L	Ν	Н
L	Ν	Н	e+
N	Н	e+	e+
H	e+	e+	e+
	0 L N		0 L N L N H N H e+

This is only a *possible definition* !

NOTES

Required properties of normalized interval addition:

- commutativity : implies the symmetry of the operation table (around the main diagonal)
- null element (0): $a \oplus_N 0 = 0 \oplus_N a = a$
- operand monotonicity : if a₁ ≤ a₂ then (a₁ ⊕_N b) ≤ (a₂ ⊕_S b), holds for both operands

This allows some flexibility in the definition. *Another possible definition*

$[a]\oplus_N [b]$	0	L	Ν	Н	
0	0	L	Ν	Н	
L	L	L	Ν	Н	
N	N	Ν	Ν	Н	
Н	H	Н	Н	Н	

The notion of qualitative models

- 1 Sign and interval calculus
- 2 The notion of qualitative models
- **3** Signed Directed Graph (SDG) models
- 4 Confluences
- **5** Qualitative difference equations

The notion of qualitative models

The range space of the variables and parameters is interval-valued

- sign-valued
 - Signed Directed Graph (SDG) models
 - Confluences (sign qualitative differential equations)
- interval-valued
 - Qualitative Differential Equations (QDEs): constraint type, algebraic type

From AI viewpoint: qualitative models are **special knowledge representation forms** with special reasoning.

The origin of qualitative models

Nonlinear dynamical models in state-space form:

Qualitative models can be derived *systematically* from engineering models by using

- interval-values variables and parameters
- simplified equations

SDG models

Sign and interval calculus

The notion of qualitative models

3 Signed Directed Graph (SDG) models

- Structure graph
- Diagnostic reasoning

Confluences

5 Qualitative difference equations

The structure of a state-space model

Linearized state-space models near a steady-state point

$$\begin{array}{rcl} \frac{dx}{dt} &=& Ax + Bu & (\text{state eq.}) \\ y &=& Cx + Du & (\text{output eq.}) \end{array}$$

Signed structure matrices : [A]

$$[A]_{ij} = \begin{cases} + & \text{if} & a_{ij} > 0 \\ 0 & \text{if} & a_{ij} = 0 \\ - & \text{if} & a_{ij} < 0 \end{cases}$$

Structure graph

A signed directed graph $S = (V, \mathcal{E}; w)$

• vertex set for the state, input and output variables

$$V = X \cup U \cup Y$$
$$X \cap U = X \cap Y = U \cap Y = \emptyset$$

- edges for the *direct* effects between variables
- edge weights for the sign of the effect

Construction of the structure graph

Given a nonlinear state space model

$$\begin{array}{rcl} \frac{dx}{dt} &=& f(x,u) & (\text{state eq.}) \\ y &=& h(x,u) & (\text{output eq.}) \end{array}$$

The structure graph $S = (V, \mathcal{E}; w)$ is constructed in three steps

0 vertex set for the state, input and output variables

$$V = X \cup U \cup Y$$
$$X \cap U = X \cap Y = U \cap Y = \emptyset$$

2 edges for the *direct* effects between variables

- either from the linearized model equations
- or by direct inspection of the model equations
- edge weights for the sign of the effect

NOTES

Construction of the edges and edge weights by direct inspection of the model equations

- input \rightarrow state edges : a directed edge $u_i \rightarrow x_j$ exists, if u_i is present in the right-hand side $f_i(x, u)$ of the *j*th state equation
- state \rightarrow state edges : a directed edge $x_i \rightarrow x_j$ exists, if x_i is present in the right-hand side $f_j(x, u)$ of the *j*th state equation
- input \rightarrow output edges : a directed edge $u_i \rightarrow y_j$ exists, if u_i is present in the right-hand side $h_j(x, u)$ of the *j*th output equation
- state \rightarrow output edges : a directed edge $x_i \rightarrow y_j$ exists, if x_i is present in th right-hand side $h_j(x, u)$ of the *j*th output equation

Important

There are no edges directed to the input vertices. There are no edges directed from the output vertices

Paths in the structure graph

A directed path $P = (v_1, v_2, ..., v_n)$, $v_i \in V$, $e_{i,i+1} = (v_i, v_{i+1}) \in \mathcal{E}$

- describe an indirect effect from variable v_1 to v_n
- value of the path

$$W(P) = \prod_{i=1}^{n-1} w(e_{i,i+1})$$

• significance of *shortest path(s)* and *directed circles*

Important

In the structure graph edges describe direct effects between variables, and directed paths correspond to indirect effects between them.

Diagnostic reasoning using SDGs

Sign-valued variables: sign of the deviation from their steady-state value

The effect of a variable v_i to another variable v_i

- initial deviation is determined by the sign-value of the shortest path(s)
 - sign-sum is needed if not unique \Longrightarrow ambiguity
- steady-state effect is the sign-sum of the sign-value of all paths
 - \implies **ambiguity** (often)
 - directed circles: solution of sign-linear equations

Example – Coffee machine

State-space model of the coffee machine

$$\begin{array}{ll} \frac{dh}{dt} &=& \frac{v}{A}\eta_{I} - \frac{v}{A}\eta_{O} & (\text{mass}) \\ \frac{dT}{dt} &=& \frac{v}{Ah}(T_{I} - T)\eta_{I} + \frac{H}{c_{\rho}\rho h}\kappa & (\text{energy}) \end{array}$$

- *t* time [*s*]
- h level in the tank [m]
- v volumetric flowrate $[m^3/s]$
- c_p specific heat [Joule/kgK]
- ρ density $[kg/m^3]$
- T temperature in the tank [K]
- T_I inlet temperature [K]
- *H* heat provided by the heater [*Joule/sec*]
- A cross section of the tank $[m^2]$
- η_I binary input valve [1/0]
- η_O binary output valve [1/0]
- κ binary switch [1/0]

Signed Directed Graph (SDG) models

Diagnostic reasoning

SDG of the coffee machine

Confluences

Sign and interval calculus

- 2 The notion of qualitative models
- 3 Signed Directed Graph (SDG) models

4 Confluences

- Derivation and solution of confluences
- Rule generation from confluences

5 Qualitative difference equations

Origin of confluences

"Qualitative Physics" by de Kleer and Brown

Sign version of lumped nonlinear state equations (dynamic models with perfectly stirred balance volumes)

- can be *formally derived* therefrom
- sign-valued variables and operations are used

Important

A complete and contradiction-free rule-set can be derived from confluences

Derivation of confluences

define qualitative variables [q] and δq to each of the model variables q(t) as follows:

$$q~\sim~[q]={\it sign}(q)~~,~~dq/dt~\sim~\delta q={\it sign}(dq/dt)$$

2 operations are replaced by sign operations, i.e.

$$+ \sim \oplus s$$
, $* \sim \otimes s$ etc.

Parameters are replaced by + or - or 0 forming sign constants in the confluence equations, i.e. they virtually disappear from the equations.

Solution of a confluence

In the form of an **extended truth table** (sign-operation table)

- collect all of the *right-hand side variables* (time-dependent values!)
- enumerate all of their sign-values
- systematically enumerate all of the possible combinations
 ⇒ exponentially growing size with the number of variables

Rule generation from confluences

The rows of the truth table of a confluence can be interpreted as a rule if one reads them from right to left. For example

$$\delta h = [\eta_I] \ominus_S [\eta_O]$$

with the combination $\eta_I = 0$, $\eta_I = +$ gives $\delta h = -$

if
$$(\eta_I = \text{closed})$$
 and $(\eta_O = \text{open})$ then $(h = \text{decreasing})$

Important

Rule sets can be generated from the truth table of a confluence. The generated rules are datalog rules. The generated rule set is contradiction-free by construction, but it may not be complete.
NOTES

Important

The **lack of completeness** of a generated rule set is the consequence of the fact, that one does not generate a rule of the consequence has the value ? (i.e., **unknown sign**).

A simple example -1

Model equation: mass balance of the coffee machine

$$\frac{dh}{dt} = \frac{v}{A}\eta_I - \frac{v}{A}\eta_O$$

- qualitative variables: $[\eta_I] \in \{0,+\}$, $[\eta_O] \in \{0,+\}$
- 2 all sign constants are "+"
- Sconfluence

$$\delta h = [\eta_I] \ominus_S [\eta_O]$$

A simple example – 2

Truth table of the confluence

$$\delta h = [\eta_I] \ominus_{\mathcal{S}} [\eta_O]$$

δh	$[\eta_I]$	$[\eta_O]$
0	0	0
_	0	+
+	+	0
?	+	+

Qualitative difference equations

- Sign and interval calculus
- 2 The notion of qualitative models
- 3 Signed Directed Graph (SDG) models
- 4 Confluences
- 5 Qualitative difference equations
 - The derivation and solution of QDEs
 - Rule generation from QDEs

The derivation of discrete time qualitative DAEs

Dynamic models derived from first engineering principles: continuous time differential-algebraic equation models

- differential equations originate from conservation balances: to be transformed to difference equations (time discretization)
- selection of the *qualitative range spaces* of variables and parameters
- deriving the qualitative form

Qualitative signals – 1

Qualitative range spaces

$$Q = \{H, N, L, 0\}, \ B = \{0, 1\}, \ Q_{\mathcal{E}} = \{H, N, L, 0, e+, e-\}$$

with High, Low, Normal, error.

Important

A qualitative signal is a signal (input, output, state and disturbance (fault indicator)) that takes its values from a finite qualitative range set

An event is generated when a qualitative signal changes its value. An event e_X is formally described by a pair $e_X(t, q_X) = (t, [x](t) = q_X)$ where t is the occurrence time when the qualitative signal [x] takes the value q_X .

Qualitative signals – 2

Signal trace : a sequence of events related to a qualitative signal [x] with values in $q_X \in Q_{\mathcal{E}}$

$$\mathcal{T}_{(x,k_1,k_N)} = \{ [x](k_1), ..., [x](k_N) \} = \{ q_{X1}(k_1), ..., q_{XN}(k_N) \}$$

Simplified notation: time is omitted

$$\mathcal{T}_x = (q_{X1}, ..., q_{XN})$$

e.g. with normalized intervals $\mathcal{Q}_E = \{H, N, L, 0, e+, e-\}$

$$(N, N, L, 0)$$
, (N, N, N) , etc.

Solution of a qualitative DAE

In the form of a **solution table** (interval operation table)

- collect all of the right-hand side variables (time-dependent values!)
- enumerate all of their signal traces
- systematically enumerate all of the possible combinations
 ⇒ exponentially growing size with the number of variables

A static example: sensor with additive type fault

Algebraic model equation: $v^m = v + \chi \cdot E$ $[v] \in Q$, $[v]^m \in Q_e$, $\chi \in B_{-1} = \{-1, 0, 1\}$ and [E] = L

[<i>v^m</i>]	[χ]	[v]	mode
N	0	N	normal
Н	0	Н	normal
L	0	L	normal
0	0	0	normal
e+	1	Н	faulty
Н	1	N	faulty
N	1	L	faulty
L	1	0	faulty
N	-1	Н	faulty
L	-1	N	faulty
0	-1	L	faulty
e-	-1	0	faulty

The applied operation table for the normalized intervals should also be defined!

Rule generation from QDEs

The rows of the solution table of a QDE can be interpreted as a rule if one reads them from right to left. For example

$$v^m = v + \chi \cdot E$$

with the combination [v] = N, $\chi = -1$ gives $[v]^m = L$

if
$$(\chi = {\sf neg \ fault})$$
 and $([v] = {\sf normal})$ then $([v]^m = {\sf low})$

Important

Rule sets can be generated from the truth table of a static QDE in a datalog form. The generated rules are contradiction-free and complete.

NOTES

Important

Completeness of the generated rule set follows from the operation table of normalized intervals.

Because of the non-fixed endpoints, the result of an algebraic manipulation with operand of atomic value has also an atomic value. This means that no **unknown** valued consequence exists (no growing uncertainty).

Rule generation from QDEs

A dynamic example: mass balance of the coffee machine

Differential equation in discrete form: $h^{+1} = h + \chi_I \cdot v - \chi_O \cdot v$ $[h], [h]^{+1} \in Q_e, \chi_I, \chi_O \in \mathcal{B} \text{ and } [v] = L$ Solution with constant inputs

[<i>h</i>] ⁺¹	[h](t ₀)	χ_l	χo
(N, N, N)	N	(1,1,1)	(1,1,1)
(L, L, L)	L	(1,1,1)	(1,1,1)
(N, N, N)	N	(0,0,0)	(0,0,0)
(H, e+, e+)	N	(1,1,1)	(0,0,0)
(N, H, e+)	L	(1,1,1)	(0,0,0)
(L, 0, e-)	N	(0,0,0)	(1,1,1)
(0, e-, e-)	L	(0,0,0)	(1,1,1)