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Analysis of the properties of the estimates

Recall: Sample, statistics

Consider a (scalar valued) random variable ξ with probability density
function fξ(x).

Sample
is a collection (set) of n independent random variables

S(ξ) = {ξ1, ξ2, ..., ξn}

where every ξi has the same distribution as ξ.

the sample corresponds to a set of measurements about ξ

Statistics
is a (deterministic) function of the sample elements (a random
variable itself)

s(S) = F (ξ1, ξ2, ..., ξn)

a statistics is used to construct an estimate
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Analysis of the properties of the estimates

Statistical properties of the sample mean – 1

Consider a scalar valued random variable ξ with probability density
function fξ(z) and a sample S(ξ) = {ξ1, ξ2, ..., ξn}.

Sample mean: a statistics for estimating the mean value

µ(S) =
1

n
(ξ1 + ξ2 + ...+ ξn)

Important

If the random variable ξ has a normal or Gaussian distribution
(ξ ∼ N(m, σ2))
then µ has also a normal or Gaussian distribution.
(For large n the distribution of µ is approximately Gaussian).

µ ∼ N(m,
σ2

n
)
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NOTES

It is important to notice that the variance of the sample mean
decreases with the increase of the number of measurements.

This is the reason, why we try to measure a random quantity more than

once, as much times as we can.



Analysis of the properties of the estimates

Recall: Measured data set

Consider a scalar valued random variable ξ with a sample
S(ξ) = {ξ1, ξ2, ..., ξn}.

Measured data set
is a collection (set) of n measurements of the sample elements
{ξ1, ξ2, ..., ξn}

D(ξ, n) = {x1, x2, ..., xn}

D is a realization of S .

Important

The measured data set contains an actual set of measurements about ξ
that are not random variables but deterministic values (a realization).
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Analysis of the properties of the estimates

Recall: Estimates

Consider a scalar valued random variable ξ with a sample
S(ξ) = {ξ1, ξ2, ..., ξn}, and with a measured data set

D(ξ, n) = {x1, x2, ..., xn}

Estimate
is a realization of a statistics s(S) = F (ξ1, ξ2, ..., ξn)

ŝ(D) = F (x1, x2, ..., xn)

Important

an estimate is computed from the actual measurement values in the data
set D
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Analysis of the properties of the estimates Unbiased estimates

Unbiased estimates

Important (Unbiased estimate)

An estimate ŝ(D) realizing a statistics s(S) of a parameter p is unbiased,
if the mean value of its statistics is equal to the parameter, i.e.
E{s(S)} = p.

Important (Unbiasedness of the sample mean)

The sample mean

µ̂(D) =
x1 + ...+ xn

n

is an unbiased estimate of the mean value of the random variable ξ
underlying the sample S(ξ) = {ξ1, ξ2, ..., ξn}.
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NOTES

Unbiasedness is a basic requirement for an estimate.
It ensures, that one obtains a reliable estimated value when the number
of measurements is increasing.



Analysis of the properties of the estimates Confidence intervals, statistical hypothesis

Confidence intervals

Consider a scalar valued statistics (i.e. a random variable) s(S) of a
parameter p with probability density function fs(z) and a confidence
(significance) level (1− π) (0 < π << 1).

Important (Confidence interval)

The confidence interval

[pm(1− π), pM(1− π)]

is an interval estimation of p on the significance level (1− π) if∫ pM(1−π)

pm(1−π)
fs(z)dz = (1− π)

i.e. p is in the interval [pm(1− π), pM(1− π)] with probability (1− π)
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NOTES

The notion of confidence intervals. can be understood by recalling the
meaning of a probability density function.
On the example when the parameter is the mean value of a Gaussian
random variable with

mm(1− π) , mM(1− π)

we can see the notion in the figure below:



Analysis of the properties of the estimates Confidence intervals, statistical hypothesis

Generalization to the vector valued case

If the parameter is vector valued, then it has a confidence region in the
parameter space for a given significance level.

A two parameter example of confidence regions is seen in the figure below
(right sub-figure).
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Analysis of the properties of the estimates Confidence intervals, statistical hypothesis

Statistical hypothesis

Consider a scalar valued statistics (i.e. a random variable) s(S) and an
estimate ŝ(D) of a parameter p and a confidence (significance) level
(1− π) (0 < π << 1)

Important (Statistical hypothesis)

A simple statistical hypothesis is a relation

H0 : p = p∗

for the parameter p with a given constant value p∗ (we suggest that the
value of p is p∗).

K. Hangos PE Sept 2020 12 / 39



Analysis of the properties of the estimates Confidence intervals, statistical hypothesis

Testing a statistical hypothesis

Consider a (scalar valued) statistics (i.e. a random variable) s(S) and an
estimate ŝ(D) of a parameter p and a confidence (significance) level
(1− π) (0 < π << 1) with a simple statistical hypothesis H0 : p = p∗.

Important (Statistical hypothesis testing)

Hypothesis testing is to make a decision if we accept the hypothesis H0 on
the confidence (significance) level (1− π).

Hint: if the estimate ŝ(D) is within the confidence interval
[p∗m(1− π), p∗M(1− π)] for the parameter p then we accept the hypothesis
H0 on the confidence (significance) level (1− π).
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Linear static models for parameter estimation

Recall: Model types

y =M(x , p)

linear in parameters

M(x , p) = pTF(x)

where F(x) is a possibly nonlinear function of the independent
variable vector x

dynamic
discrete time index k = 0, 1, ...,K , ... such that

y(k) =M(x(k), x(k − 1), ..., x(k − K ); p) , k = K ,K + 1, ..., n
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Linear static models for parameter estimation Simple linear scalar case

Simple linear scalar case: model form

Consider a (scalar valued) dependent variable y with a scalar independent
variable x and a scalar parameter p.

Linear model
y (M) = p · x

Measurements (independent!):

Y = {y1, y2, ..., ym} for fixed X = {x1, x2, ..., xm}

such that yj = p · xj + εj , where εj , j = 1, ...,m are independent
identically distributed random variables with p.d.f. fε(z).

Important

Sample for the measurement error

S(ε) = {(y1 − px1), ..., (ym − pxm)}
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Linear static models for parameter estimation Simple linear scalar case

Simple linear scalar case: residuals

Consider a scalar valued dependent variable y with a scalar
independent variable x and a scalar parameter p

y (M) = p · x

and with independent measurements such that yj = p · xj + εj ,
εj , j = 1, ...,m are independent identically distributed random variables

Measured data set: Dm = {(yj ; xj) | j = 1, ...,m}

Residuals:
rj = yj − y

(M)
j = yj − p · xj

Sample for the estimation of the residual properties:
S(ε) = {r1, r2, ..., rm} where every ri has the same distribution as ε.
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NOTES

Residual: characterizes the deviation of the measured values from the
”ideal”, model-predicted values.
Residuals play a major role in parameter estimation. One needs to have a
so called predictive model to be able to compute the residual values.

y (M) =M(x , p) , r = y − y (M)

Parameter estimation based on residuals: aims to find such a

parameter value p̂ that minimizes the magnitude of the residuals (i.e. the

deviation from the ”ideal”, model-predicted values.



Linear static models for parameter estimation Linear models with vector valued parameters

Static linear models: vector valued parameter – 1

Static linear model
that is linear in parameters p ∈ Rn and also in independent variables
x ∈ Rn but has a single dependent variable y

y (M) = xTp =
n∑

i=1

xipi

Measured data: m independent measurements

yj =
n∑

i=1

xjipi + εj , Dm = {(yj ; xj1, ..., xjn) | j = 1, ...,m}

with fixed independent variable values xji , j = 1, ...,m; i = 1, ..., n and
independent identically distributed measurement errors εj .
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Linear static models for parameter estimation Linear models with vector valued parameters

Static linear models: vector valued parameter – 2

Static linear model
that is linear in parameters p ∈ Rn and also in independent variables
p ∈ Rn but has a single dependent variable y

y (M) = xTp =
n∑

i=1

xipi

yj =
n∑

i=1

xjipi + εj , Dm = {(yj ; xj1, ..., xjn) | j = 1, ...,m}

Residuals
rj = yj − y

(M)
j = yj − x (j)Tp

where x (j) is the jth fixed independent variable set.
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Linear regression The principle of LS estimation

Simple linear scalar case: LS estimation – 1

Linear model
y (M) = p · x

Residuals
rj = yj − y

(M)
j = yj − p · xj , j = 1, ...,m

Loss function: squared deviation from the model

V (p;X ) =
m∑
j=1

r2
j =

m∑
j=1

(yj − p · xj)2

with fixed X .

Important (LS principle)

The least squares (LS) estimation principle: choose the parameter
estimate p̂ such that the quadratic function V (p) is minimal.
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NOTES

Least squares principle
In the general case, the parameter estimation procedure using the
residuals tries to find such a parameter estimate p̂ that minimizes the
magnitude of the residuals.
We can consider the residuals

rj = yj − y
(M)
j = yj − p · xj , j = 1, ...,m

as entries of a vector, then its magnitude is measured using a suitable
vector norm.
The loss function is then nothing else, but the value of this norm.
The least squares (LS) estimation principle is obtained when we use the
2-norm of a vector, i.e.:

V (p;X ) =
m∑
j=1

r2
j =

m∑
j=1

(yj − p · xj)2

This choice is practical, because

• it punishes the deviations both with positive and negative sides,

• it is an analytically tractable smooth (quadratic) function of the unknown
parameters.



Linear regression The principle of LS estimation

Simple linear scalar case: LS estimation – 2

Loss function: squared deviation from the model

V (p;X ) =
m∑
j=1

r2
j =

m∑
j=1

(yj − p · xj)2

with fixed X .
Choose the parameter estimate p̂ such that the quadratic function V (p) is
minimal.

Important

Solution: using optimization

dV (p)

dp
= −2 ·

m∑
j=1

xj(yj − p · xj) = 0 ⇒ p̂ =
1∑m

j=1 xjxj
·

m∑
j=1

xjyj

The estimate is a linear function of the measured yj -s.
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Linear regression The principle of LS estimation

Parameter estimation of linear static models – 1

Problem statement
Given:

A model that is linear in parameters p ∈ Rn

y (M) = xTp =
n∑

i=1

xipi

where x ∈ Rn are deterministic independent variables (measured and
set) and y (M) ∈ R is the model output, measured value y is a random
variable with measurement error.

From m (m ≥ n) measurements we form

y =


y1

y2

..
ym

 , X =


x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · · · · · · · ·
xm1 xm2 · · · xmn


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Linear regression The LS estimate

Parameter estimation of linear static models – 2

Consider a weighted quadratic loss function V

V (p;X ) = rTWr =
m∑
i=1

m∑
j=1

riWij rj

rj = yj − y
(M)
j = yj − x (j)Tp , j = 1, ...,m

where r is the residual vector and W is a weighting matrix (often
W = I )

Important (Least squares (LS) estimate)

The LS estimate p̂ of the parameters p minimizes V .

The minimum of V is at ∂V
∂p = 0 with W = I

p̂ = (XTX )−1XT y

The estimate is a linear function of the measured yj -s.
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NOTES

LS estimate with W = I
If one chooses the weighting matrix W to be the unit matrix, then the
quadratic loss function specializes to

V (p;X ) = rTWr =
m∑
i=1

m∑
j=1

riWij rj =
m∑
i=1

r2
i

rj = yj − y
(M)
j = yj − x (j)Tp , j = 1, ...,m

that is simply the sum of squares of the individual residual entries.
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Properties of the LS estimate

Recall: Vector-valued random variables

Given a vector valued random variable ξ

ξ : ξ(ω), ω ∈ Ω, ξ(ω) ∈ Rµ

Its mean value m ∈ Rµ is a real vector.

Its variance COV {ξ} is a square real matrix, the covariance matrix:

COV {ξ} = E{(ξ − E{ξ})(ξ − E{ξ})T}

Covariance matrices are positive definite symmetric matrices:

zTCOV {ξ}z ≥ 0 , ∀z ∈ Rµ
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Properties of the LS estimate

Recall: Linearly transformed random variables

Let us transform the vector-valued random variable ξ(ω) ∈ Rn using the
non-singular square transformation matrix T ∈ Rn×n:

η = T ξ

The properties of the vector-valued random variable η:

E{η} = TE{ξ} , COV {η} = TCOV {ξ}TT

If the random variable ξ has a Gaussian distribution N(mξ,∆ξ) with mean
value mξ and covariance matrix ∆ξ, then the transformed random variable
η will also be Gaussian N(mη,∆η), where

mη = Tmξ , ∆η = T∆ξT
T
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Properties of the LS estimate Unbiasedness and covariance matrix

The distribution of the LS estimate

The LS estimate
p̂ = (XTX )−1XT y

with X being a fixed independent variable value matrix, and the measured
dependent variable vector y is

y = X · p + ε

where the measurement errors εj , j = 1, ...,m are independent identically
distributed random variables with p.d.f. fε(z) and zero mean E{ε} = 0.

p̂ = (XTX )−1XT (X · p + ε) = p + (XTX )−1XT ε

Important (Unbiasedness of the LS estimate)

The LS estimate is unbiased, because E{p̂} = p.
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Properties of the LS estimate Unbiasedness and covariance matrix

The covariance matrix of the LS estimate

The LS estimate

p̂ = (XTX )−1XT y = p + (XTX )−1XT ε

with X being a fixed independent variable value matrix resulting in the
transformation matrix T = (XTX )−1XT (from ε to p̂).

The covariance matrix of the estimate is

COV {p̂} = (XTX )−1σ2
ε

where σ2
ε is the variance of the measurement errors.

Important (Experiment design)

We can influence the covariance matrix of the estimate by choosing the
fixed values of the independent variables properly.
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Properties of the LS estimate Unbiasedness and covariance matrix

The confidence region of the parameters
in the vector valued case

If the parameter is vector valued with a given mean value vector and
covariance matrix, then it has a confidence region of ellipsoidal shape
in the parameter space for a given significance level.

A two parameter example of a confidence region is seen in the figure below.
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Properties of the LS estimate Evaluation of the residuals

Evaluation of the residuals

For unbiased estimates the residuals should be realizations of
independent identically distributed random variables with zero mean.
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Properties of the LS estimate Evaluation of the residuals

Evaluation of the residuals
a real industrial example

An example of a controlled pressure signal (both measured and
model-predicted) is seen below.

The residuals are not everywhere independent zero-mean random variables.
It indicates a modelling problem.
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Tutorial

Tutorial problems – Linear regression

A. Scalar valued parameter

B. Vector valued parameter
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Tutorial

Tutorial problems – A

Example (Linear regression for scalar parameter – 1)

Consider the following model that is linear in parameters:

y (M) = px (1)

How many parameters does this model have?
1 (scalar parameter)

Consider a measured data set consisting of (yj ; xj) pairs

D5 = {(0.5; 1.0), (0.2; 1.0), (0.0; 1.0), (−0.5; 1.0), (−0.2; 1.0)}

Compute an estimate of p if possible with its mean value and
variance.
p̂ = 0.0 , σ̂2

p = 0.0825
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Tutorial

Tutorial problems – A

Example (Linear regression for scalar parameter – 2)

Consider the following model that is linear in parameters:

y (M) = px (2)

Consider a measured data set consisting of (yj ; xj) pairs

D5 = {(0.5; 1.0), (0.2; 1.0), (0.0; 1.0), (−0.2; 1.0), (−0.5; 1.0)}

Compute an estimate of p if possible with its mean value and
variance.
p̂ = 0.0 , σ̂2

p = 0.0825

Evaluate the properties of the residuals (mean value, variance)
may not be independent – slow drift
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Tutorial

Tutorial problems – A

Example (Linear regression for scalar parameter – 2)

Consider the following model that is linear in parameters:

y (M) = px (2)

Consider a measured data set consisting of (yj ; xj) pairs

D5 = {(0.5; 1.0), (0.2; 1.0), (0.0; 1.0), (−0.2; 1.0), (−0.5; 1.0)}

Compute an estimate of p if possible with its mean value and
variance.
p̂ = 0.0 , σ̂2

p = 0.0825

Evaluate the properties of the residuals (mean value, variance)
may not be independent – slow drift
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Tutorial

Tutorial problems – B

Example (Linear regression for vector valued parameter – 1.1)

Consider the modified model that is linear in parameters:

y (M) = ax + b

where a and b are unknown scalar parameters.

How many parameters does this model have? Construct the parameter
vector p.
2; p = [ a , b ]T
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Tutorial

Tutorial problems – B

Example (Linear regression for vector valued parameter – 1.2)

Consider the modified model that is linear in parameters:

y (M) = ax + b

where a and b are unknown scalar parameters.

Consider a measured data set consisting of (yj ; xj) pairs

D5 = {(0.5; 1.0), (0.6; 1.0), (0.3; 1.0), (−0.2; 1.0), (0.5; 1.0)}

Construct the matrix X and the vector y needed for the estimation.
Comment on the solvability of the estimation problem.

y =


0.5
0.6
0.3
−0.2
0.5

 , X =


1.0 1.0
1.0 1.0
1.0 1.0
1.0 1.0
1.0 1.0


Estimation is NOT possible, matrix X is singular.
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Tutorial

Tutorial problems – B

Example (Linear regression for vector valued parameter – 2)

Consider the model that is linear in parameters:

y (M) = ax + b

where a and b are unknown scalar parameters.

Consider a modified measured data set consisting of (yj ; xj) pairs

D4 = {(0.5; 1.0), (0.6; 1.0), (0.3; 0.5), (0.2; 0.5)}

Construct the matrix X and the vector y needed for the estimation.
Comment on the solvability of the estimation problem.

y =


0.5
0.6
0.3
0.2

 , X =


1.0 1.0
1.0 1.0
0.5 1.0
0.5 1.0


Estimation is POSSIBLE, matrix X is of full rank.
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Tutorial

HOMEWORK

Consider the following model that is linear in parameters:

y (M) =
2∑

i+1

pixi + b

where the unknown model parameters are p1, p2 and b.

Consider a measured data set consisting of (yj ; xj1, xj2) values

D4 = {(0.5; 1.0, 1.0), (0.6; 1.0, 0.9), (0.3; 1.0, 0.5), (0.2; 0.5, 1.0)}

Compute an estimate of p if possible with its mean value and
covariance matrix.

Evaluate the properties of the residuals (mean value, variance).
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