

Low level Petri nets

Miklós Gerzson

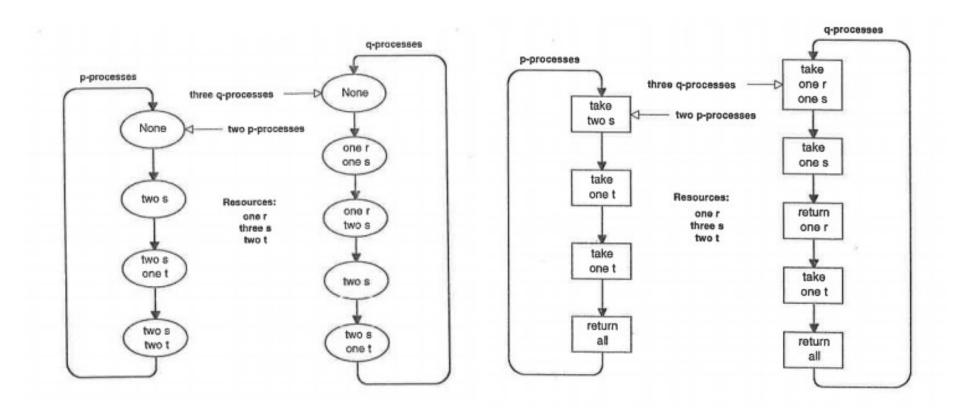
- Petri nets: graphical and mathematical modelling tool for the description of dynamic systems
- system types: concurrent, asynchronous, distributed, parallel, nondeterministic, stochastic
- graphical representation: structural description and dynamic characterization
- mathematical description: state equations, algebraic equations
- analysis tool: behavioral and structural features of systems

History

- Carl Adam Petri: Kommunikation mit Automaten, PhD Dissertation, 1962,
- very popular modelling tool
- conference series: International Conferences on Application and Theory of petri Nets and Concurrency, e.g.
- papers: Petri Net Newsletter, e.g.
- software: HPSim, CPN Tools, e.g.

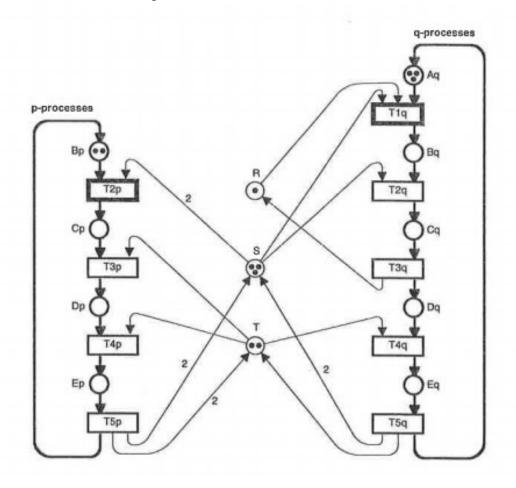
Introductory example

Problem description



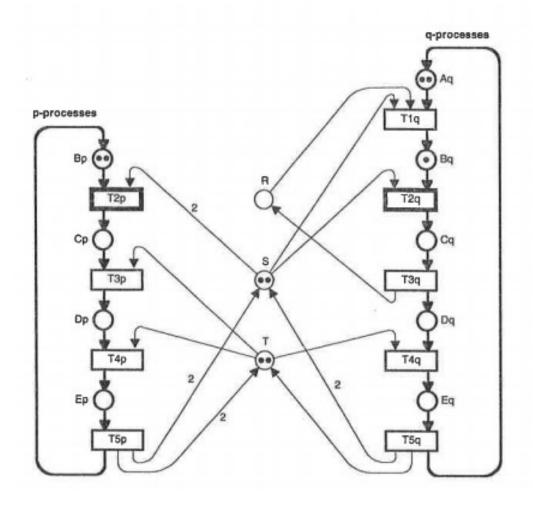
Introductory example

Petri net of example



Introductory example

Firing of a transition



Basic definitions

- Petri nets are the abstract models of information flow in the form of directed graph
- two types of elements:
 - transitions occurring events
 - places pre- and postconditions
- graphical representation
 - transitions: bars or boxes
 - places: circles
 - logical connections: arcs

Input places	Transitions	Output places
Preconditions	Events	Postconditions
input data	computation step	output data
input signals	signal processor	output signals
resources needed	task or job	resources released
conditions	clause in logic	conclusion(s)
buffers	processor	buffers

Dynamic behavior

- tokens on places: description of the state of a place
 - availability of a given resource
 - number of data
 - number of resources
- representation of tokens: black dots
- marking vector: defines the number of tokens on places
- weight function: assigns weight (positive integers) to the arcs

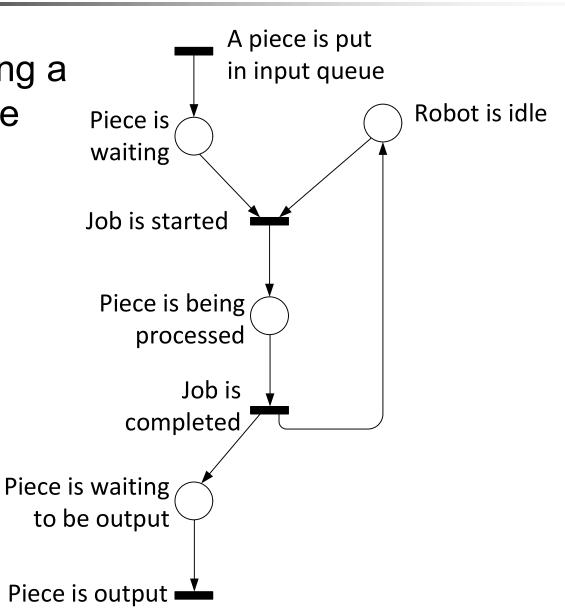
Formal definition

Petri net is a 5-tuple,

$$PN = (P, T, F, W, M_0)$$

where

$$P = \{p_1, p_2, ..., p_m\}$$
 – set of places;
 $T = \{t_1, t_2, ..., t_n\}$ – set of transitions;
 $F \subseteq (P \times T) \cup (T \times P)$ – set of arcs;
 $W: F \rightarrow \{0, 1, 2, 3, ...\}$ – weight function;
 $M_0: P \rightarrow \{0, 1, 2, 3, ...\}$ – initial marking.
 $P \cap T = \emptyset$ and $P \cup T \neq \emptyset$



Formal description of the example

$$PN = (P, T, F, W, M_0)$$

$$P = \{p_1, p_2, p_3, p_4\}$$

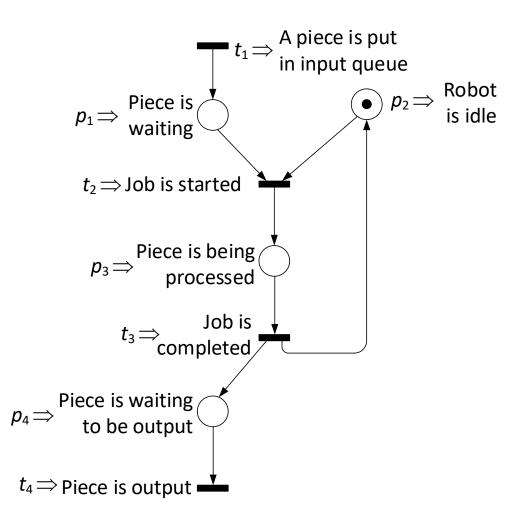
$$T = \{t_1, t_2, t_2, t_3\}$$

$$F = \{(t_1, p_1), (p_1, t_2), (p_2, t_2), (t_2, p_3), (p_3, t_3), (t_3, p_2), (t_3, p_4), (p_4, t_4)\}$$

$$W: w(t_1, p_1) = 1, w(p_1, t_2) = 1,$$

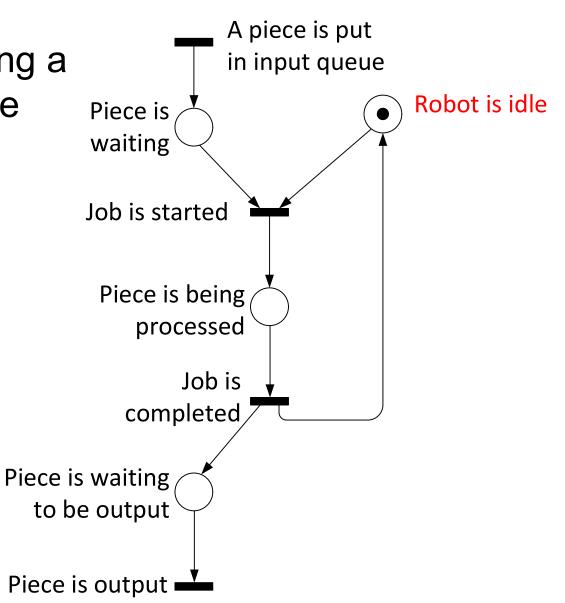
 $w(p_2, t_2) = 1, ...$
 $w(p_4, t_4) = 1.$

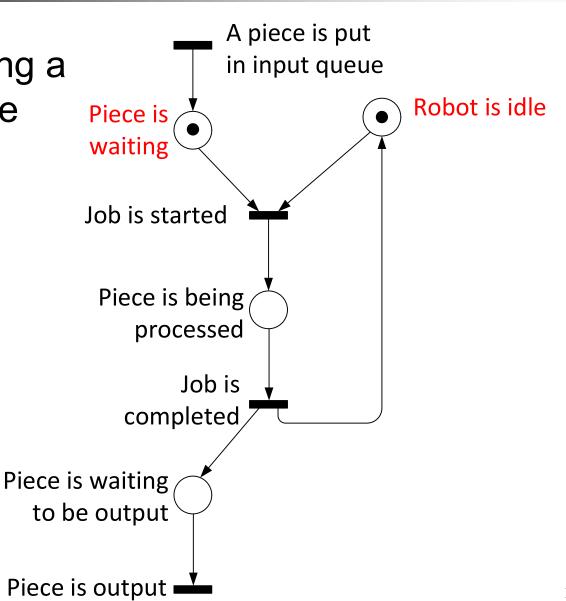
$$M_0: P \to \{0, 1, 0, 0\}$$

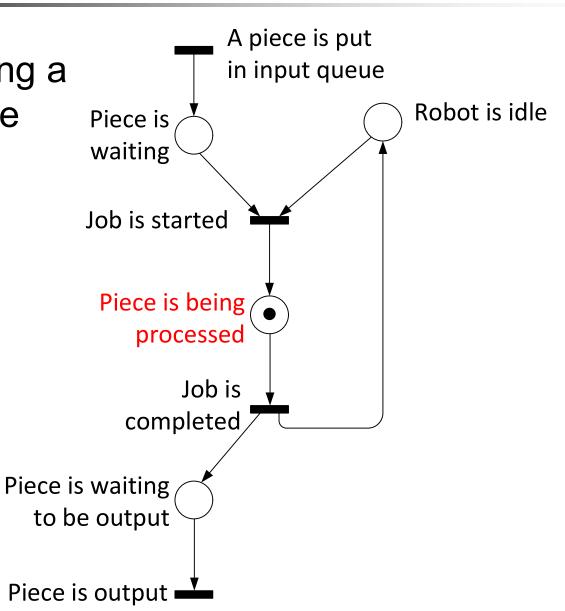


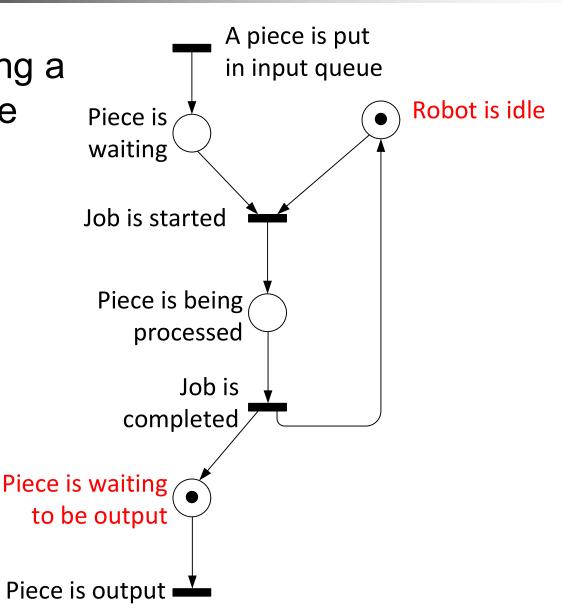
Firing of transitions

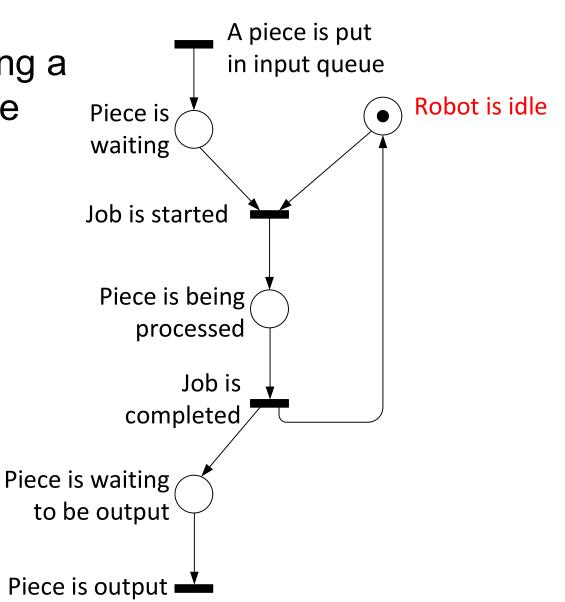
- Behavior of systems: state of their elements and changes in the system
- Simulation of changes: firing rules
- 1. A transition t is enabled if each of its input place is marked with at least w(p, t) tokens (w(p, t) is the weight of the arc from the place p to the transition t).
- 2. An enabled transition may or may not fire.
- 3. A firing of an enabled transition t removes w(p, t) tokens from each of its input place and adds w(t, p) tokens to its output places (w(t, p)) is the weight of the arc from the transition t to the place p).











Formal description

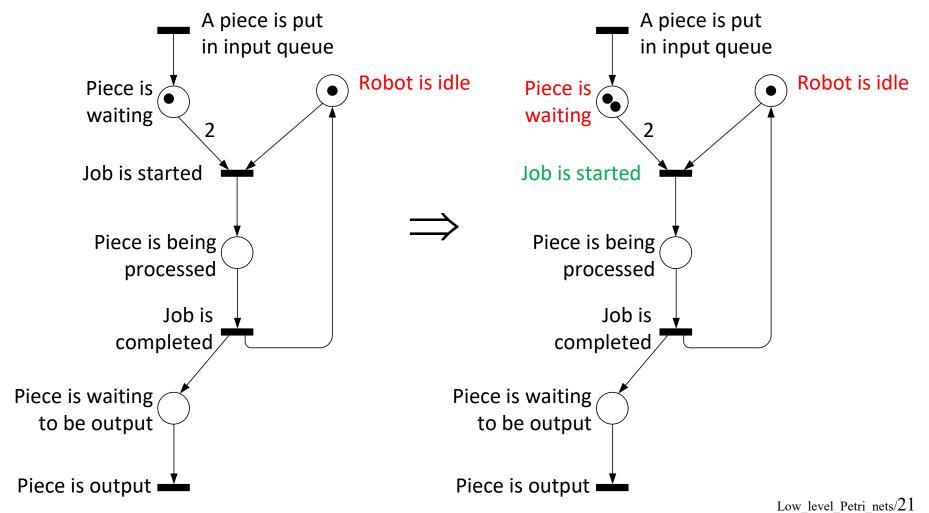
- source transition has no input place $\rightarrow t_1$
- sink transition has no output place $\rightarrow t_4$
- source transitions: unconditionally enabled
- sink transitions: consumes tokens
- Petri net is ordinary: all arc weights are 1's
- self-loop: p is input and output place of t
- Petri net is pure: no self-loop in it



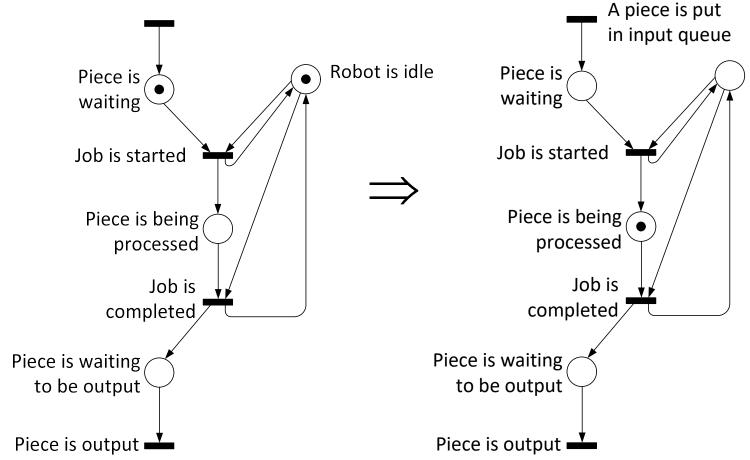
Formal description

- Capacity of places: the maximum number of tokens that they can hold any time
 - infinite capacity no limit to number of tokens
 - finite capacity the maximum token number is defined: K(p)
 - transition can fire depending on the capacity of their output places!
 - number of waiting pieces : $K(p_1) = \infty$
 - one robot is in the system: $K(p_2) = 1$
 - one piece is being processed: $K(p_3) = 1$
 - number of pieces to be output $K(p_4) = 1(!)$

• two pieces are needed for the process: $w(p_1, t_2) = 2$



Self-loop: robot is idle until the piece is being processed



Formal description

 Formal description of net state changes after firing transition t_i:

$$M_{k+1}(p_i) = M_k(p_i) - w(t_j, p_i) + w(p_i, t_j)$$

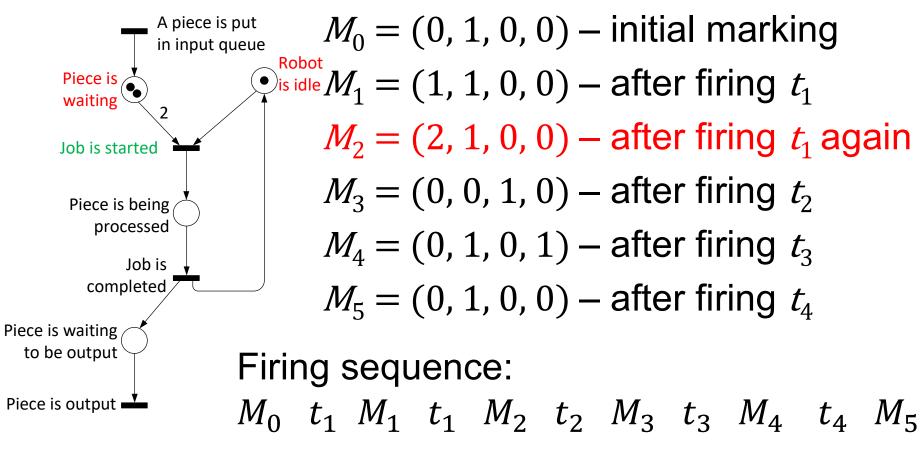
where

 $M_k(p_i)$ is the number of token on place p_i i = 1, ..., m, m is the number of places in the net $w(t_j, p_i) = 0$ and $w(p_i, t_j) = 0$ no connection between t_i and p_i

Firing or occurrence sequence:

$$M_0 \ t_{j_1} \ M_1 \ t_{j_2} \dots M_{k-1} \ t_{j_k} \ M_k$$

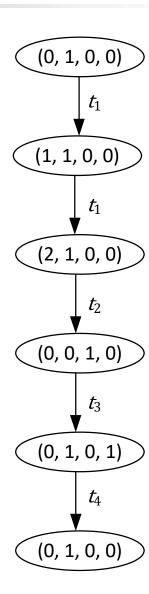
 Markings after firing of transitions (assume 2 pieces are to be processed):



Occurrence graph

- Occurrence graph: a graph containing
 - all reachable markings from a given initial marking and
 - all possible firings at each marking
- Definition
 - $M_0 \in R(P, T, F, W, M_0)$
 - if $M' \in R(P, T, F, W, M_0)$ and $\exists t_j$ is enabled in M' and after its firing M'' is generated, then $M'' \in R(P, T, F, W, M_0)$

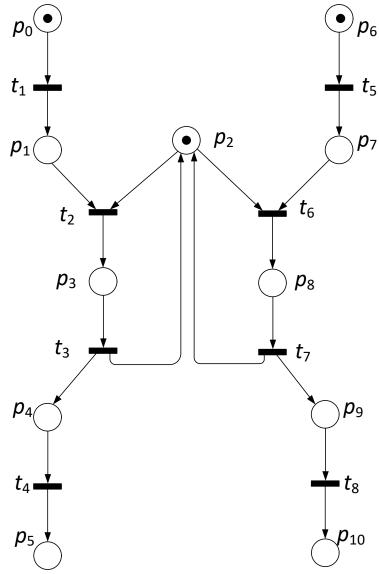
Occurrence graph of the example



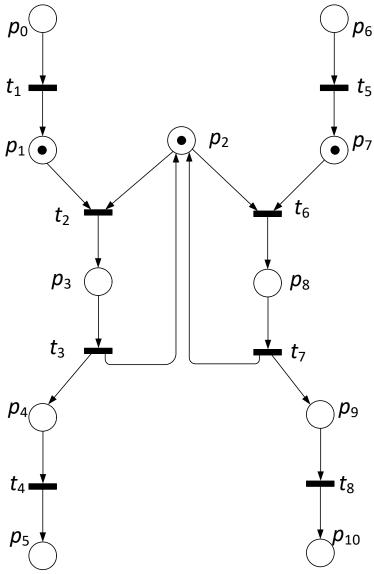
Parallel activities

- Firing two or more transitions at the same time:
 - concurrent situation: the transitions can fire independently of each other the places have exactly one incoming and one outcoming arc → marked graph
 - conflict situation: after firing of one transition the other will not be enabled
 - confusion: if concurrent and conflict situations present at the same time (symmetric and asymmetric)

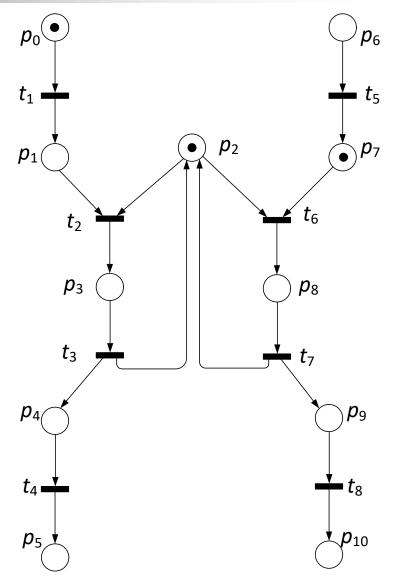
- Firing of transitions: robot serves two manufacturing lines
- Transitions t₁ and t₅
 can fire at the same time
- Concurrent situation



- Firing of transitions: robot serves two manufacturing lines
- Transitions t₂ and t₆
 can not fire
 at the same time
- Conflict situation

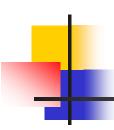


- Firing of transitions: robot serves two manufacturing lines
- If transition t_6 fires first, there is no conflict
- If transition t_1 fires first, there is conflict between transitions t_2 and t_6
- Confusion



Parallel activities

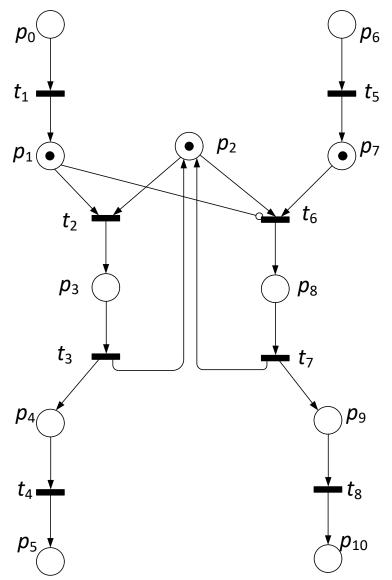
- concurrent situation: arbitrary order for the firing of transitions
- conflict situation: the firing of transitions mutually exclusive
- confusion: conflict depends on the order of the firing of transitions
- branches on reachability tree: refer to either concurrent or conflict situation



Parallel activities

- Solutions for conflict situation:
 - inhibitor arc transition is enabled iff the place does not contain any token
 - priority function: transition having higher priority fires
 - extended Petri net models

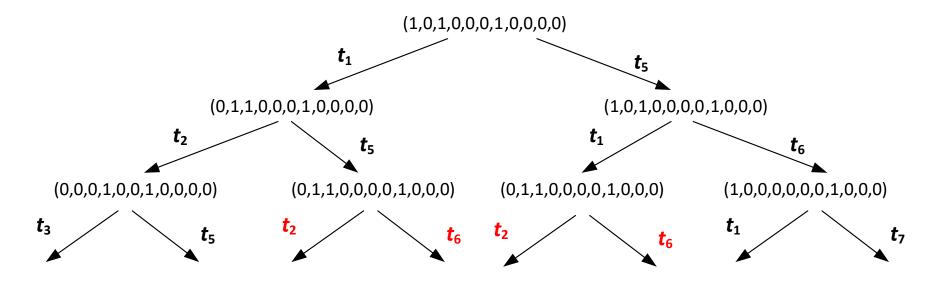
• only t_2 is enabled



 $Low_level_Petri_nets/33$

Reachability graph of extended example

 Reachability graph of two manufacturing line system (part)



transitions denoted by red are in conflict

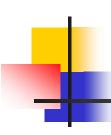
Occurrence graph

- properties of occurrence graph
 - even if the net is simple the graph can be infinite
 - solution:
 - delete duplicate nodes from the graph
 - introduction of symbol ω , where ω represents arbitrarily large number, representing the accumulation of tokens on a given place

Behavioral properties

- Analysis of Petri nets:
 - reachability
 - boundedness
 - liveness
 - reversibility
 - coverability
 - persistence
 - fairness

- Reachability
 - A marking M_n is reachable from marking M_0 , if there exists a firing sequence from M_0 to M_n
 - $R(M_0)$ set of all possible markings reachable from M_0
 - reachability problem: $M_n \in R(M_0)$?
 - submarking reachability



Boundedness

- A Petri net is k-bounded if the number of tokens in each place does not exceed a finite number k.
- $M(p_j)$ denotes number of tokens on a place p_j
- boundedness problem: $M(p_j) \le k$ for $\forall p_j$ and $\forall M_n \in R(M_0)$.
- safe net $\Rightarrow k=1$

- Liveness
 - deadlock-free operation
 - A Petri net is live if it is possible to fire any transition by progressing through some further firing sequence
 - liveness of all net is ideal property
 - too costly to verify
 - liveness of a given transition

- Liveness (cont.)
 - different level of liveness for a transition t:
 - L0-live or dead t can never be fired in any firing sequence
 - L1-live or potentially fireable if t can be fired at least once in some firing sequence
 - L2-live if t can be fired at least k-times in some firing sequence
 - L3-live if t can be fired infinitely often in some firing sequence
 - L4-live if t is L1-live for every marking

- Reversibility
 - A Petri net is reversible if the initial marking M0 is reachable from every marking $M_n \in R(M_0)$
 - home state: a marking M' is home state if it is reachable from every marking $M_n \in R(M_0)$

- Coverability
 - a marking M is coverable if $\exists M' \in R(M_0)$ such that $M'(p) \ge M(p)$ for $\forall p$ in the net
 - coverability \Leftrightarrow *L*1-liveness:
 - let M be the minimum marking needed to enable transition t, then

t is dead iff M is not coverable

t is L1-live iff M is coverable

- Persistence
 - a Petri net is persistent if, any two enabled transitions, the firing of one transition will not disable the other
 - a transition in a persistent net stays enabled until it fires

- Fairness
 - different definitions in the literature
 - bounded-fairness: two transitions is in boundedfair relation if the maximum number of times that either can fire while the other is not firing is bounded
 - unconditionally fairness: a firing sequence is unconditionally fair if it is finite or every transition in the net appears infinitely often in it

- Analysis of behavioral properties
 - constructing the occurrence graph for given initial markings
 - searching on the occurrence graph
 - desired or undesired markings
 - number of tokens on given place
 - firing sequences based on arc labels
 - checking the terminal nodes
 - may be NP-hard
 - cyclic behavior, symbol ω

- aim is to characterize the Petri net independently from the initial marking
- matrix equations governing the dynamic behavior of concurrent systems modeled by Petri nets
- solvability of these equations is limited
 - nondeterministic nature inherent in Petri net model
 - solutions must be found as non-negative integer
- assume: Petri net is pure (no self loop in it) or can be made pure

- incidence matrix
- let the number of transition n and the number of places m in a Petri net
- the incidence matrix $A = [a_{ij}]$

$$a_{ij} = a^+_{ij} - a^-_{ij}$$

where $a_{ij}^+ = w(i,j)$ is the weight of the arc from t_i to p_i and $a_{ij}^- = w(j,i)$ is the weight of the arc from p_i to t_i

- a is the number of tokens to be removed
- a⁺_{ij} is the number of tokens to be added
- a_{ij} is the number of tokens changed in a place
- transition t_i is enabled iff

$$a_{ij} < M(j), \quad j = 1, 2, ..., m$$

- State equations:
 - let M_k is $m \times 1$ column vector and $M_k(j)$ denotes the number tokens in place j after kth firing in some firing sequence
 - let control or firing vector u_k is $n \times 1$ unit column vector, the value 1 in ith position indicates that transition i fires at kth firing
 - state equation of Petri net:

$$M_k = M_{k-1} + A^T u_k$$
 $k = 1, 2, ...$

- Necessary reachability condition:
 - let M_d is reachable from M_0 trough a firing sequence $\{u_1, u_2, ..., u_d\}$
 - expressing with state equation:

$$M_d = M_0 + A^T \sum_{k=1}^d u_k$$

or

$$A^T x = \Delta M$$
 where $\Delta M = M_d - M_0$; $x = \Sigma u_k$ x firing count vector

• equation $A^T x = \Delta M$ has a solution x iff ΔM is orthogonal to every solution y of its homogeneous system:

$$Ay = 0$$

 T-invariant: An integer solution of the homogeneous equation:

$$A^T x = 0$$

 P-invariant: An integer solution of the homogeneous equation:

$$Ay = 0$$

T-invariants:

• if x is a T-invariants then there exists a marking M_0 and firing sequence starting from M_0 back to M_0 , that its firing count vector is equal to X

• P-invariants:

• if y is a P-invariants then $M^Ty = M_0^Ty$ for any fixed initial marking M_0 and any M in $R(M_0)$

Automata, formal languages and Petri nets

- Automata and Petri nets:
 - both suitable for representing DES
 - explicit representation of state transitions
 - automata: the definition contains the possible states and the possible transitions between them in explicit way
 - Petri nets: the state description is defined in distributed way, it is encoded into the state of places

Automata, formal languages and Petri nets

- Petri-net languages
 - labelled Petri net generating the contextsensitive language $L(M_0) = \{a^nb^nc^n \mid n \ge 0\}$

