Computer Controlled Systems II. Tutorial: Introduction to Stateflow

Anna I. Pózna

University of Pannonia Faculty of Information Technology Department of Electrical Engineering and Information Systems

pozna.anna@virt.uni-pannon.hu

January 27, 2020

э

Discrete state space

•
$$x(t) \in \mathbb{X} = \{x_0, x_1, \ldots, x_n\}$$

Discrete time

•
$$T = \{t_0, t_1, \ldots, t_n\}$$

Event

• change in the value of the discrete value of a variable The state transition is **event driven** Only the order of events is considered

• parallel or serial events

Stateflow

- Part of Simulink
- Graphical programming environment based on finite state machines
- Application areas
 - reactive control systems
 - control system logic
 - finite state machine
 - scheduling
 - fault detection
 - event driven systems
- Video tutorials
 - Part 1: https://www.youtube.com/watch?v=thBxzulFuyg
 - Part 2: https://www.youtube.com/watch?v=jvSjBDnvbxE
 - Part 3: https://www.youtube.com/watch?v=64iuG25g-Og
- Documentation
 - https://www.mathworks.com/help/stateflow/index.html

State

- state name
- entry action: executed when entering the state
- during action: executed while the state is active
- exit action: executed when a state is active and a transition out of the state occurs
- Transition
 - arcs between states
 - event_or_message
 - $trigger[condition]\{condition_action\}/\{transition_action\}$
 - condition: boolean expression, in(state_name), temporal expression...
 - action: executing a function, setting a variable...
- Flowchart
 - creating functions
 - programming logic patterns
 - graphical form

- Hierarchy
 - compact models
 - superstates and subcharts
- Temporal logic
 - implement time delay between state transitions
- Variables
 - local data
 - input/output data from Simulink
 - constant
 - parameter
- Truth tables
 - condition table: description and conditional expression, decision: T, F, (don't care)
 - action table: description and action

Redundant sensor pair

- Open the model and examine it!
- openExample('stateflow/ModelingARedundantSensorPair UsingAtomicSubchartExample')

Example 2

Operation of a garage gate

- State machine for the gate
- State machine for the driver

States

• Gate

- Waiting_for_car
- Waiting_for_button
- Waiting_for_take_ticket
- Allow_in
- Driver
 - Car_arrive
 - Press_button
 - Take_ticket
 - Drive_in

(I) < (II) < (II) < (II) < (II) < (II) < (II) < (III) < (IIII) < (III) < (III) < (III) < (I

Local data variables

- Gate
 - gate: 0 closed, 1 opened
 - wait_button: 0 inactive, 1 active
 - wait_ticket: 0 inactive, 1 active
- Driver
 - car_arr: 0 no car, 1 car arrived
 - button: 0 not pressed, 1 pressed
 - take: 0 ticket is not taken, 1 -ticket is taken
 - car_in: 0 car not in the garage, 1 car in the garage

Input data from Simulink

o car

• Create a state machine for the driver/gate

- states
- entry actions: setting the variables
- transitions, conditions
- Make it subcharted
- Parallel decomposition
 - the two state machines are evaluated in parallel
 - set the priority order (1-gate, 2-driver)
- Simulate the model
- Add time delay to the transitions
 - $\bullet\,$ e.g. after(10,sec) \rightarrow the transition is evaluated after 10 seconds
 - take care of the evaluation precedence!