CURRICULUM VITAE

Name:	Anna Ibolya Pózna, PhD	
Place and Date of birth:	Várpalota, 12th March 1992.	
Address:	Bocskai str. 55, Pétfürdő, 8105, Hungary	
Phone:	+3620/551-8689	
e-mail:	pozna.anna@mik.uni-pannon.hu	

Working Experience

Assistant Professor	University of Pannonia,	2021-present
	Faculty of Information Technology,	
	Department of electrical Engineering and	
	Information Systems (PE MIK VIRT)	
Assistant Lecturer	PE MIK VIRT	2020-2021.
Assistant	PE MIK VIRT	2018-2020.

Education

PhD (information technology)	University of Pannonia, Veszprém	2020.
Computer Science Engineering, MSc	University of Pannonia, Veszprém	2014-2016.
Electrical Engineering, BSc	University of Pannonia, Veszprém	2010-2014.

Language skills

English (B2) complex language exam	2010.
Russian (B2) complex language exam	2019.

Current Research

Investigation of battery operation in temperature dependent environment

- estimation of Li-ion battery life using model based methods
- examination of battery life in temperature dependent environment

Past Research

Diagnosis of technological systems using colored Petri nets (CPN)

- new colored Petri net based modelling methodology
- novel fault diagnosis method based on the reachability graph of the CPN model

• diagnosis of composite systems using structural decomposition

Non-technical loss diagnosis in electrical networks

- modelling of low-voltage networks
- development of a decomposition method for complex systems
- diagnostic algorithm to detect and localize non-technical losses

Publication list

https://m2.mtmt.hu/gui2/?type=authors&mode=browse&sel=10054770

Teaching Experience

Simulation of Dynamical Systems	2021-present
Programming I-II-III.	2021-present
Electrical Energetics and Smart Grid	2020-present
Uninterrupted Power Supplies	2020-present
Electrical engineering	2020-present
Model Building Using Engineering Principles	2019-present
Discrete and Continuous Dynamical Systems	2018-present
Intelligent Control Systems	2018-present
Parameter Estimation	2017-present
Control theory and technique II. Laboratory	2016-present
Detection and Measurement Laboratory	2016-present

Awards, scolarships

National Conference of Scientific Students' Associations, 2nd place	2015.
New National Excellence Program of the Ministry of Human Capacities	2016., 2017.

Memberships

Public Body of Hungarian Academy of Sciences	member	2022-present
IEEE Control Systems Society	member	2019-present