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Previous notions Discrete event systems

Discrete event systems

Characteristic properties:

the range space of the signals (input, output, state) is discrete:
x(t) ∈ X = {x0, x1, ..., xn}
event: the occurrence of change in a discrete value

time is also discrete: T = {t0, t1, ..., tn} = {0, 1, ..., n}
Only the order of the events is considered

description of sequential and parallel events

application area: scheduling, operational procedures, resource
management



Previous notions Automata

Automaton - abstract model: G = (X,U, Y, f, g, x0)

�nite set of states: X = {x1, x2, ...xn}
�nite set of input events: U = {ε;u1, u2, ..., um}
�nite set of output events: Y = {ε; y1, y2, ..., yn}
(partial) state transition function: f : X × U → X e.g.
f(x1, u3) = x2

output function:
g : X × U → Y e.g. g(x1, u3) = y1 (Mealy automaton)
g : X → Y e.g. g(x1) = y2 (Moore automaton)

initial state: x0

Graphical description: weighted directed graph

Vertices: states (X)

Edges: state transitions (f)

Edge weights: input/output symbols (Mealy),
input symbols (Moore)



Previous notions Automata

Automata - discrete event systems

Automaton Discrete event state
model space model

State space X X ∈ Zn

Input u string from U discrete time
discrete valued signal

Output y string from Y discrete time
discrete valued signal

State x(k + 1) = f(x(k), u(k)) x(k + 1) = Ψ(x(k), u(k))
equation
Output y(k) = g(x(k), u(k)) (Mealy) y(k) = h(x(k), u(k))
equation y(k) = g(x(k)) (Moore)



Previous notions Petri nets

(ordinary) Petri net - abstract description:
PN = (P, T, I, O)

Static description (structure)

set of places (conditions): P

set of transitions (events): T

Input (pre-condition) function:
I : T → P∞

Output (consequence) function:
O : T → P∞

Graphical description: bipartite directed graph

Vertices: places (P ) and transitions (T )
(partitions)

Edges: input and output functions (I,O)
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Generalized Petri net models
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Generalized Petri net models

Generalized Petri net models

Low level Petri nets

Hierarchical Petri nets

Timed Petri nets: using inscriptions

clock: built in (or special "source" place)
�ring time to transitions
(waiting time for places)

Coloured Petri nets: using inscriptions

tokens have discrete value ("colour")
colour set to places
discrete functions to the transitions and arcs



Generalized Petri net models Low level Petri nets

Low level Peeri nets

De�nition: PN = (P, T, F,W,M0)

P set of places

T set of transitions

F ⊆ (P × T ) ∪ (T × P ) set of arcs

W : F → N arc weights

M0 : P → N initial marking

P ∩ T = ∅ and P ∪ T 6= ∅

Enabling of a transition

µ(p) ≥W (p, t), ∀p, where p is the input place of t

Firing of a transition: it consumes and produces tokens according to the
weight function
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Generalized Petri net models Hierachical Petri nets

Hierarchical Petri nets

Super net - subnets:
building in: to any place or transition
similar repetitive net-fragments
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Generalized Petri net models Timed Petri nets

Petri net model of a runway � 3

Timed Peri net model
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Generalized Petri net models Coloured Petri nets

Petri net model of a runway � 4

Coloured Peri net model: "inscriptions"
Edge fucntion: afelki : if val(pfp_lefogl) = ” ↑ ” then ”true”

afel = val(pfp_lefogl) , val(pfel) = afel
Colour set: Cfelle = { ↑ , ↓ }



Reachability graph of Petri nets
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Reachability graph of Petri nets Operation (dynamics) of Petri nets

Dynamics of Petri nets

Marking function: marking points (tokens)

µ : P→ N , µ(pi) = µi ≥ 0

µT = [µ1, µ2, . . . , µn] , n = |P|

A transition is enabled when its pre-conditions are "true" (there is at least
one token on its input places)

∀p ∈ I(t, p) : µ(p) ≥ 1

An enabled transition may �re (operates): it "consumes" tokens from all

of its input places and produces tokens in each output places
Notion: µ(i)[tj > µ(i+1)

Firing (operation) sequence

µ(0)[tj0 > µ(1)[tj1 > ...[tjk > µ(k+1)



Reachability graph of Petri nets Parallel and con�icting execution steps

Parallel events

More than one enabled (�reable) transition:
concurrency (independent conditions), con�ict, confusion
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Reachability graph of Petri nets Solution of Petri net models

The solution problem

Abstract problem statement

Given:

a formal description of a discrete event system model

initial state(s)

external events: system inputs

Compute:

the sequence of internal (state and output) events

The solution is algorithmic! The problem is NP-hard!



Reachability graph of Petri nets The reachability graph

Petri net models � reachability graph

Solution: marking (systems state) sequences
reachability graph (tree) (weighted directed graph)

vertices: markings

edges: if exists transition the �ring of which connects them

edge weights: the transition and the external events

Construction:

1 start: at the given initial state (marking)

2 adding a new vertex: by �ring an enabled transition (with the e�ect of
inputs!)

May be NP-hard (in con�ict situation or non-�nite operation)



Reachability graph of Petri nets The reachability graph

Construction of the reachibility graph

µ(0) is the root. L is the list of new nodes.

1 Add µ(0) to L.

2 If L is empty then stop, the reachability graph is ready. Otherwise
choose the �rst node x from L with the associated marking. Remove x
from L.

3 If another node y exists in the graph with the same associated
marking, then x is a duplicate.

4 If no transition enabled in the marking of x then x is a terminal node
(deadlock).

5 For all transitions enabled in the marking of node x:

Create a new node and connect it to x with an edge, labelled by the
�re transition. Add this node to the end of L.
Determine the marking associated with the new node.

6 Continue with step 2.



Reachability graph of Petri nets The reachability graph

Reachability graphs

Finite case
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Reachability graph of Petri nets The reachability graph

Reachability graphs

Non-�nite case
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Reachability graph of Petri nets The reachability graph

Reachability graphs

Non-�nite case
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Reachability graph of Petri nets The reachability graph

Reachability graphs

Non-�nite case
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Reachability graph of Petri nets The reachability graph

Reachability graphs

Non-�nite case
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Reachability graph of Petri nets The reachability graph

Reachability graphs

Non-�nite case

p1 p2

p3

t1

t2

(1,0,0)

(0,1,1)

(1,0,1)

(0,1,2)

...

t1

t2

t1

t2



Reachability graph of Petri nets The reachability graph

Non-�nite reachability graph

Reduction: using the ω symbol

a marking µ' "dominates" an other node µ, if µ is on the path from
the root to µ' and

∀p ∈ P µ′(p) ≥ µ(p) (might be equal for all places!)
∃p ∈ P µ′(p) > µ(p) (at least one place has more tokens on it)

the diverging number of tokens can be denoted by ω

if the parent marking contains ω, then all of its children will have ω in
the same place
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Reachability graph of Petri nets The reachability graph

Non-�nite reachability graph

Reduction: using the ω symbol

a marking µ' "dominates" an other node µ, if µ is on the path from
the root to µ' and

∀p ∈ P µ′(p) ≥ µ(p) (might be equal for all places!)
∃p ∈ P µ′(p) > µ(p) (at least one place has more tokens on it)

the diverging number of tokens can be denoted by ω

if the parent marking contains ω, then all of its children will have ω in
the same place
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Reachability graph of Petri nets The reachability graph

Non-�nite reachability graph
Reduction: using the ω symbol

a marking µ' "dominates" an other node µ, if µ is on the path from
the root to µ' and

∀p ∈ P µ′(p) ≥ µ(p) (might be equal for all places!)
∃p ∈ P µ′(p) > µ(p) (at least one place has more tokens on it)

the diverging number of tokens can be denoted by ω

if the parent marking contains ω, then all of its children will have ω in
the same place
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Reachability graph of Petri nets The reachability graph

Non-�nite reachability graph
Reduction: using the ω symbol

a marking µ' "dominates" an other node µ, if µ is on the path from
the root to µ' and

∀p ∈ P µ′(p) ≥ µ(p) (might be equal for all places!)
∃p ∈ P µ′(p) > µ(p) (at least one place has more tokens on it)

the diverging number of tokens can be denoted by ω

if the parent marking contains ω, then all of its children will have ω in
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Reachability graph of Petri nets The reachability graph

Non-�nite reachability graph
Reduction: using the ω symbol

a marking µ' "dominates" an other node µ, if µ is on the path from
the root to µ' and

∀p ∈ P µ′(p) ≥ µ(p) (might be equal for all places!)
∃p ∈ P µ′(p) > µ(p) (at least one place has more tokens on it)

the diverging number of tokens can be denoted by ω

if the parent marking contains ω, then all of its children will have ω in
the same place
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Analysis of discrete event system models

Analysis of Petri net models

Dynamic properties

behavioural (initial state dependent)

structural (only depends on the structure graph)

Behavioural properties

reachabiliy (coverability, controllability)

deadlocks, liveness

boundedness, safeness

(token) conservation

Structural properties

state and transition invariant: cyclic behaviour



Analysis of discrete event system models

Reachability of Petri net models

The notion of reachability: whether there exists

to a given [initial state (µ(I)), �nal state (µ(F ))] pair

a �ring sequence, such that

µ(I)[tj0 > µ(1)[tj1 > ...[tjk > µ(F )

The notion of coverability:

µ′′ ≥ µ′ ⇔ ∀i : µ′′i ≥ µ′i

The same as the usual controllability



Analysis of discrete event system models

Boundedness of Petri nets

Related properties to boundedness

�niteness (boundedness): Is the number of tokens �nite for every
initial state?

Safeness: the bound is 1 for each place

Can be de�ned (examined) for the whole net or only for a given set of
places

Conservative Petri net: the number of tokens is constant
(resource-conservation)



Analysis of discrete event system models

Liveness of Petri nets

The notion of liveness: from a given initial state

for a transition: is there a �ring sequence when the transition is active?

for a set of transition, for the whole net

di�erent levels of liveness for a transition t:

L0-live or dead: t can never �re in any �ring sequence
L1-live or potentially �reable: t can �re at least once in some �ring
sequence
L2-live: t can �re at least k times in some �ring sequence
L3-live: t can �re in�nitely often in some �ring sequence
L4-live: t is L1 live-for every marking

Deadlock: a non-�nal state from where there is no enabled (�reable)
transition



Analysis of discrete event system models

Liveness examples

t0 is L0-live (dead)

t1 is L1-live

t2 is L2-live

t3 is L3-live

Resource allocation (queue with two servers)

p client to be served

q client is being served

r client has been served

s free servers

a arrival of client

d departure of client

b start of service

c end of service

All transitions are L4-live
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Analysis of discrete event system models

Simple Petri net examples

Deadlock: the marking (0, 1)
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Analysis of discrete event system models

Resource allocation deadlock

Con�ict situations
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Analysis of discrete event system models

A safe place example
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Analysis of discrete event system models

Dynamic analysis methods of Petri net models � 1

Analysis of behavioural properties

by constructing the reachability graph

and searching on the vertices of the graph

may be NP-hard

Problems:

cyclic behaviour

non-bounded places



Analysis of discrete event system models

Dynamic analysis methods of Petri net models � 2

Structural properties

by constructing the occurrence matrix of the Petri net graph

H ∈ R|P |×|T |

and solving linear set of equations

polynomial time, restricted importance

The elements of the occurrence matrix (for nets without loops)

hij = w(pi, tj) =

{
< 0 if pi precondition
> 0 if pi consequence



Analysis of discrete event system models

Place and transition invariants

Place invariant: set of conservation places PINV ⊆ P
by solving the equation

zTH = 0T , z ∈ R|P |

for its non-trivial solutions (z is the indicator vector)

Transition invariant: a set of transitions TINV ⊆ T that brings the
system back to the initial state
by solving the equation

Hv = 0 , v ∈ R|T |

for its non-trivial solutions (v is the indicator vector)



Analysis of discrete event system models

Place and transition invariants � Example
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