Discrete and Continuous Dynamical Systems

Attila Magyar

University if Pannonia Faculty of Information Technology Department of Electrical Engineering and Information Systems

(日) (四) (王) (王) (王)

Basic notions

Realizations in special form

- Controllable canonical form
- Observable canonical form
- Diagonal form

Joint controllability and observability

4 General decomposition theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Transformation of states

Two different state space models with the same input-output behavior

$$\begin{split} \dot{\boldsymbol{x}}(t) &= \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t) \quad , \quad \dot{\overline{\boldsymbol{x}}}(t) = \overline{\boldsymbol{A}}\overline{\boldsymbol{x}}(t) + \overline{\boldsymbol{B}}\boldsymbol{u}(t) \\ \boldsymbol{y}(t) &= \boldsymbol{C}\boldsymbol{x}(t) + \boldsymbol{D}\boldsymbol{u}(t) \quad , \quad \boldsymbol{y}(t) = \overline{\boldsymbol{C}}\overline{\boldsymbol{x}}(t) + \overline{\boldsymbol{D}}\boldsymbol{u}(t) \end{split}$$

which are related by the transformation

 $oldsymbol{T} \in \mathbb{R}^{n imes n}$, $det \ oldsymbol{T}
eq 0$, $\overline{oldsymbol{x}} = oldsymbol{T} oldsymbol{\Rightarrow}$, $\overline{oldsymbol{x}} = oldsymbol{T} x \Rightarrow \ oldsymbol{x} = oldsymbol{T}^{-1} \overline{oldsymbol{x}} = n$ $oldsymbol{T}^{-1} \dot{\overline{oldsymbol{x}}} = oldsymbol{A} oldsymbol{T}^{-1} \overline{oldsymbol{x}} = oldsymbol{A} oldsymbol{T}^{-1} \overline{oldsymbol{x}} = oldsymbol{A} oldsymbol{T}^{-1} \overline{oldsymbol{x}} + oldsymbol{T} oldsymbol{B} oldsymbol{u}$ $oldsymbol{oldsymbol{x}} = oldsymbol{T} oldsymbol{A} oldsymbol{T}^{-1} \overline{oldsymbol{x}} + oldsymbol{T} oldsymbol{B} oldsymbol{u}$ $oldsymbol{oldsymbol{T}} = oldsymbol{T} oldsymbol{A} oldsymbol{T}^{-1} \overline{oldsymbol{x}} + oldsymbol{T} oldsymbol{B} oldsymbol{u}$ $oldsymbol{oldsymbol{T}} = oldsymbol{T} oldsymbol{T}^{-1} \overline{oldsymbol{x}} + oldsymbol{T} oldsymbol{B} oldsymbol{T} oldsymbol{T}^{-1} \overline{oldsymbol{x}} + oldsymbol{T} oldsymbol{B} oldsymbol{u}$ $oldsymbol{oldsymbol{T}} = oldsymbol{T} oldsymbol{T}^{-1} \overline{oldsymbol{x}} + oldsymbol{T} oldsymbol{T} oldsymbol{T} oldsymbol{T} oldsymbol{T} oldsymbol{T} oldsymbol{T} + oldsymbol{T} oldsymbol{U}$ $oldsymbol{oldsymbol{T}} = oldsymbol{T} + oldsymbol{T} ol$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへぐ

Basic notions

2 Realizations in special form

- Controllable canonical form
- Observable canonical form
- Diagonal form

Joint controllability and observability

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

э

4 General decomposition theorem

Realizations in special form Controllable canonical form

Controllable canonical form (controller form)

•
$$H(s) = \frac{b(s)}{a(s)}$$

• Controllability canonical form of the state space model

$$\dot{\boldsymbol{x}}(t) = \begin{bmatrix} -a_1 & \dots & -a_{n-1} & -a_n \\ 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 1 & 0 \end{bmatrix} \boldsymbol{x}(t) + \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \boldsymbol{u}(t)$$

 $y(t) = \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix} \boldsymbol{x}(t)$

- $\bullet\,$ The change of the i-th state variable depends on the i-1-th one, i>1
- The change of x_1 depends on all states and the input
- Always controllable

Observable canonical form

•
$$H(s) = \frac{b(s)}{a(s)}$$

• Observability canonical form of the state space model

$$\dot{\boldsymbol{x}}(t) = \begin{bmatrix} -a_1 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n-1} & 0 & \dots & 1 \\ -a_n & 0 & \dots & 0 \end{bmatrix} \boldsymbol{x}(t) + \begin{bmatrix} b_1 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix} \boldsymbol{x}(t)$$

• Each state variable is fed back to the previous one and the output of the system is x_1 .

イロト 不得 とうき とうせい ほう

• Always observable

Realizations in special form Diagonal form

Diagonal form (or modal form) realization

• State space model in diagonal form

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}_D \boldsymbol{x}(t) + \boldsymbol{B}_D \boldsymbol{u}(t)$$
$$\boldsymbol{y}(t) = \boldsymbol{C}_D \boldsymbol{x}(t)$$

with

$$\dot{\boldsymbol{x}} = \begin{bmatrix} \lambda_1 & \dots & 0 \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ 0 & \ddots & \ddots & \lambda_n \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} b_1 \\ \vdots \\ \vdots \\ b_n \end{bmatrix} \boldsymbol{u}$$
$$\boldsymbol{y} = \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix} \boldsymbol{x}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Controllability in diagonal form realization

Controllability matrix

 $\bullet~$ The last matrix is a Vandermonde matrix V with determinant

$$det \ \mathbf{V} = \prod_{1 \le i < j \le n} (\lambda_j - \lambda_i)$$

• Full rank of the controllability matrix

$$rank \ \mathcal{C}_n = n \quad \Leftrightarrow \quad det \ \mathcal{C}_n = \prod_i b_i \prod_{j < i} (\lambda_i - \lambda_j) \neq 0$$

Realizations in special form Diagonal form

Controllability and observability in diagonal form realization

Theorem (Controllability)

DSSR is controllable iff $\lambda_i \neq \lambda_j, (i \neq j)$ and $b_i \neq 0, \forall i$

Theorem (Observability)

DSSR is observable iff $\lambda_i \neq \lambda_j, (i \neq j)$ and $c_i \neq 0, \forall i$

うして ふゆ く 山 マ ふ し マ し く し マ

The transfer function of diagonal form realization

Transfer function

$$H(s) = \boldsymbol{C}(s\boldsymbol{I} - \boldsymbol{A})^{-1}\boldsymbol{B} = \sum_{i=1}^{n} \frac{c_i b_i}{s - \lambda_i} = \frac{b(s)}{a(s)}$$

where I is a unit matrix.

• If either $c_j = 0$ or $b_k = 0$ then the transfer function can be described by smaller number of partial fractions than the original:

$$H(s) = \sum_{i=1}^{\overline{n}} \frac{c_i b_i}{s - \lambda_i} = \frac{b(s)}{a(s)} \quad , \quad \overline{n} < n$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Basic notions

Realizations in special form

- Controllable canonical form
- Observable canonical form
- Diagonal form

3 Joint controllability and observability

4 General decomposition theorem

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

Joint controllability and observability

Equivalent SSR properties

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

Consider SISO CT-LTI systems with realization $(\boldsymbol{A},\boldsymbol{B},\boldsymbol{C})$

• Joint controllability and observability is a system property

うして ふゆ く 山 マ ふ し マ し く し マ

- Equivalent necessary and sufficient conditions
- Minimality of SSRs
- Irreducibility of the transfer function

Hankel matrices

• Definition A Hankel matrix is a block matrix of the following form

$$m{H}[1,n-1] = egin{bmatrix} m{CB} & m{CAB} & m{CAB} & m{.} & m{.} & m{CA}^{n-1}m{B} \ m{CAB} & m{CA}^2m{B} & m{.} & m{.} & m{CA}^nm{B} \ m{.} & m{.} & m{.} & m{CA}^nm{B} \ m{.} & m{.} & m{.} & m{.} & m{.} \ m{CA}^nm{B} \ m{.} & m{.} & m{.} & m{.} \ m{.} & m{.} & m{.} & m{.} \ m{.} & m{.} \ m{.} & m{.} & m{.} \ m{.} \ m{.} & m{.} \ m{.} & m{.} \ \m{.} \ m{.} \ m{.} \ m{.} \ \m{.} \ \m{$$

• It contains *Markov parameters* $CA^{i}B$ that are invariant under state transformations.

▲ロト ▲理 ト ▲ヨト ▲ヨト - ヨ - のへで

Lemma 1

Lemma (1)

If we have a system with transfer function $H(s) = \frac{b(s)}{a(s)}$ and there is an *n*-th order realization (A, B, C), which is controllable and observable then all other *n*-th order realizations are controllable and observable.

Proof

$$\boldsymbol{H}[1, n-1] = \mathcal{O}(\boldsymbol{C}, \boldsymbol{A})\mathcal{C}(\boldsymbol{A}, \boldsymbol{B})$$

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Definitions

Definition (Relative prime polynomials)

Two polynomials a(s) and b(s) are *coprime* (or relative primes) iff $a(s) = \prod (s - \alpha_i)$; $b(s) = \prod (s - \beta_j)$ and $\alpha_i \neq \beta_j$ for all i, j. In other words: the polynomials have no common factors.

うして ふゆ く 山 マ ふ し マ し く し マ

Definition (Irreducible transfer function)

A transfer function $H(s) = \frac{b(s)}{a(s)}$ is called to be irreducible if the polynomials a(s) and b(s) are relative primes.

Lemma 2

Lemma (2)

If we have a controller form realization which is jointly controllable and observable then a(s) and b(s) are relative primes (H(s) is irreducible).

Proof

• A controller form realization is controllable and

$$\mathcal{O}_c = \tilde{I}_n b(A_c)$$

$$\tilde{\boldsymbol{I}}_n = \begin{bmatrix} 0 & . & . & 1\\ 0 & . & 1 & 0\\ . & . & . & .\\ 1 & 0 & . & 0 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

イロト 不良 アイヨア イヨア ヨー ろくぐ

• Non-singularity of $b(\mathbf{A}_c)$

Joint controllability and observability

Proof of Lemma 2

$$\begin{split} \tilde{\boldsymbol{I}}_{n} &= \begin{bmatrix} \boldsymbol{e}_{n} & \boldsymbol{e}_{n-1} & \dots & \boldsymbol{e}_{1} \end{bmatrix} = \begin{bmatrix} \boldsymbol{e}_{n}^{T} \\ \boldsymbol{e}_{n-1}^{T} \\ \vdots \\ \vdots \\ \boldsymbol{e}_{1}^{T} \end{bmatrix} \quad , \quad \boldsymbol{e}_{i} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ \vdots \end{bmatrix} \quad \leftarrow i. \end{split}$$

$$\boldsymbol{A}_{c} &= \begin{bmatrix} -a_{1} & -a_{2} & \dots & -a_{n} \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix} \quad , \quad \boldsymbol{e}_{i}^{T}\boldsymbol{A}_{c} = \begin{cases} \begin{bmatrix} -a_{1} & -a_{2} & \dots & -a_{n} \\ e_{i-1}^{T} & e_{i-1}^{T} & e_{i-1}^{T} \end{bmatrix}$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへぐ

Joint controllability and observability

Proof of Lemma 2

- Computation of the observability matrix $\mathcal{O}_c = \tilde{I}_n b(\boldsymbol{A}_c) \in \mathbb{R}^{n \times n}$
- 1st row:

(n. . .

$$e_n^T b(\mathbf{A}_c) = e_n^T b_1 \mathbf{A}_c^{n-1} + \dots + e_n^T b_{n-1} \mathbf{A}_c + e_n^T b_n \mathbf{I}_n$$

n-th term: [0 \ldots 0 b_n]
(n-1)-th term: $b_{n-1} e_n^T \mathbf{A}_c = b_{n-1} e_{n-1}^T = [0 \ \dots \ b_{n-1} \ 0]$

$$\boldsymbol{e}_n^T \boldsymbol{b}(\boldsymbol{A}_c) = \begin{bmatrix} b_1 & \dots & b_{n-1} & b_n \end{bmatrix} = C_c$$

• 2nd row:

$$\boldsymbol{e}_{n-1}^T b(\boldsymbol{A}_c) = \boldsymbol{e}_n^T \boldsymbol{A}_c b(\boldsymbol{A}_c) = \boldsymbol{e}_n^T b(\boldsymbol{A}_c) \boldsymbol{A}_c \quad \Rightarrow \quad \boldsymbol{e}_{n-1}^T b(\boldsymbol{A}_c) = \boldsymbol{C}_c \boldsymbol{A}_c$$

イロト 不良 アイヨア イヨア ヨー ろくぐ

• and so on ...

Proof of Lemma 2

\mathcal{O}_c is nonsingular

- iff $b(\boldsymbol{A}_c)$ is nonsingular because matrix \boldsymbol{I}_n is always nonsingular
- $b(\mathbf{A}_c)$ is nonsingular iff $det(b(\mathbf{A}_c)) \neq 0$ which depends on the eigenvalues of $b(\mathbf{A}_c)$ matrix
- the eigenvalues of the matrix $b(\mathbf{A}_c)$ are $b(\lambda_i)$, i = 1, 2, ..., n λ_i is an eigenvalue of \mathbf{A}_c , i.e a root of $a(s) = det(s\mathbf{I} - \mathbf{A})$

$$det(b(\mathbf{A}_c)) = \prod_{i=1}^n b(\lambda_i) \neq 0$$

うして ふゆ く 山 マ ふ し マ し く し マ

Minimal realization conditions

Theorem (1)

 $H(s) = \frac{b(s)}{a(s)}$ is irreducible iff all *n*-th order realizations are jointly controllable and observable.

Proof: combine Lemma 1. and 2.

Definition (Minimal realization)

A realization (A, B, C) of dimension n is minimal if one cannot find another realization of dimension less than n.

Theorem (2)

 $H(s) = \frac{b(s)}{a(s)}$ is irreducible iff any of its realization (A, B, C) is minimal where $H(s) = C(sI - A)^{-1}B$

Proof: by contradiction

Minimal realization conditions

Theorem (3)

A realization (A, B, C) is minimal iff the system is jointly controllable and observable.

Proof: Combine Theorem 1 and Theorem 2.

Lemma (3)

Any two minimal realizations can be connected by a unique similarity transformation (which is invertible).

Proof: (Just the idea of it)

$$T = O^{-1}(C_1, A_1)O(C_2, A_2) = C(A_1, B_1)C^{-1}(A_2, B_2)$$

exists and it is invertible: this is used as a transformation matrix.

Basic notions

2 Realizations in special form

- Controllable canonical form
- Observable canonical form
- Diagonal form

Joint controllability and observability

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

ъ

General decomposition theorem

General decomposition theorem

Given an (A, B, C) SSR, it is always possible to transform it to another realization $(\overline{A}, \overline{B}, \overline{C})$ with partitioned state vector and matrices

$$\overline{\boldsymbol{x}} = \begin{bmatrix} \overline{\boldsymbol{x}}_{co} & \overline{\boldsymbol{x}}_{c\overline{o}} & \overline{\boldsymbol{x}}_{\overline{co}} \end{bmatrix}^{T}$$
$$\overline{\boldsymbol{A}} = \begin{bmatrix} \overline{\boldsymbol{A}}_{co} & \boldsymbol{0} & \overline{\boldsymbol{A}}_{13} & \boldsymbol{0} \\ \overline{\boldsymbol{A}}_{21} & \overline{\boldsymbol{A}}_{c\overline{o}} & \overline{\boldsymbol{A}}_{23} & \overline{\boldsymbol{A}}_{24} \\ \boldsymbol{0} & \boldsymbol{0} & \overline{\boldsymbol{A}}_{\overline{c}o} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \overline{\boldsymbol{A}}_{43} & \overline{\boldsymbol{A}}_{\overline{c\overline{o}}} \end{bmatrix} \quad \overline{\boldsymbol{B}} = \begin{bmatrix} \overline{\boldsymbol{B}}_{co} \\ \overline{\boldsymbol{B}}_{c\overline{o}} \\ \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix}$$
$$\overline{\boldsymbol{C}} = \begin{bmatrix} \overline{\boldsymbol{C}}_{co} & \boldsymbol{0} & \overline{\boldsymbol{C}}_{\overline{c}o} & \boldsymbol{0} \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General decomposition theorem

General decomposition theorem

The partitioning defines subsystems

• Controllable and observable subsystem: $(\overline{A}_{co}, \overline{B}_{co}, \overline{C}_{co})$ is minimal, i.e. $\overline{n} \leq n$ and

$$H(s) = \overline{C}_{co}(s\overline{I} - \overline{A}_{co})^{-1}\overline{B}_{co} = C(sI - A)^{-1}B$$

• Controllable subsystem

$$\left(\ \left[egin{array}{cc} \overline{m{A}}_{co} & m{0} \\ \overline{m{A}}_{21} & \overline{m{A}}_{car{o}} \end{array}
ight] \ , \ \left[egin{array}{cc} \overline{m{B}}_{co} \\ \overline{m{B}}_{car{o}} \end{array}
ight] \ , \ \left[egin{array}{cc} \overline{m{C}}_{co} & m{0} \end{array}
ight] \ \end{array}
ight)$$

• Observable subsystem

$$\left(\begin{array}{ccc} \left[\begin{array}{cc} \overline{\boldsymbol{A}}_{co} & \overline{\boldsymbol{A}}_{13} \\ \boldsymbol{0} & \overline{\boldsymbol{A}}_{\overline{c}o} \end{array}\right] \hspace{0.2cm}, \hspace{0.2cm} \left[\begin{array}{ccc} \overline{\boldsymbol{B}}_{co} \\ \boldsymbol{0} \end{array}\right] \hspace{0.2cm}, \hspace{0.2cm} \left[\begin{array}{ccc} \overline{\boldsymbol{C}}_{co} & \overline{\boldsymbol{C}}_{\overline{c}o} \end{array}\right] \end{array}\right)$$

• Uncontrollable and unobservable subsystem

 $([\overline{A}_{\overline{co}}] \ , \ \mathbf{0} \ , \ \mathbf{0})$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト