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Basic notions Prediction based diagnosis

Prediction-based diagnosis

General problem statement
Given:

The number of faulty modes NF (0=normal)

Predictive dynamic model for each faulty mode

y (Fi)(k + 1) =M(Fi)(D[1, k]; p(Fi)) , k = 1, 2, . . .

Measured data record: D[0, k] = { (u(τ), y(τ) | τ = 0, · · · , k}

Loss function J(Fi), i = 0, · · · ,NF

J(Fi)(y−y (Fi), u) =
k∑

τ=1

[ r (i)T (τ)Qr (i)(τ) ] , r (i)(τ) = y(τ)−y (Fi)(τ) , τ = 1, 2, · · ·

Compute: The actual faulty mode of the system, i.e. the fault index i that
minimizes the loss function.
Fault isolation
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Basic notions Traces, trace distances

Signal traces – event sequences

The (signal trace) of a qualitative signal [x ] is the event sequence

T(x)(t0, tF ) = {(t0; [x ](t0) = qx0), (t1; [x ](t1)] = qx1), ..., (tF ; [x ](tF ) = qxF )}

defined on the time interval (t0, tF ) with q∗ ∈ Qx

A vector-valued trace of multiple signals is defined as T(u,d ,y)(t0, tF )
Simplified notation: by omitting the time, e.g.

T(h,T )(1, 3) = {(N,N), (L,H), (L, e+)}

For diagnostic purposes we define
nominal traces (for describing normal behaviour)
characteristic traces (for describing faulty behaviour)
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Basic notions Traces, trace distances

Norms of traces

Scalar valued trace: discrete time signal with qualitative values

T(x)(t0, tF ) = {(t0; [x ](t0) = qx0), (t1; [x ](t1)] = qx1), ..., (tF ; [x ](tF ) = qxF )}

defined on the time interval (t0, tF ) with q∗ ∈ Qx Example:

T(h)(1, 3) = {(N), (L), (L)}

Norm: based on the norm of discrete time scalar valued real signals using
a mapping function R : Qx 7→ R:

R(q) =



−1 q = e−
0 q = 0
1 q = L
2 q = N
3 q = H
4 q = e+
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Traces and trace distances revisited

Qualitative range spaces

Range spaces with different granularity
Boolean

B = {0, 1}

Real valued
Q = {e−, 0, L,N,H, e+}

where "N" is the normal range, "L" and "H" denote the low and high
but acceptable interval, "e−" and "e+" is the unacceptably low and
high values

Qrefined = {e−,−0, 0, 0L, L, LN,N,NH,H,H+, e+}

with "−0" small negative values, "0L" very low, "LN" a bit low,
"NH" a bit high, "H+" very high
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Traces and trace distances revisited `-Neighbourhood of traces

`-Neighbourhood of traces

Ordered range spaces: Q = {e−, 0, L,N,H, e+} is ordered using the
ordering of the underlying real interval values such that

e −≤0≤L≤N≤H≤e+

Definition: `-neighbourhood of a qualitative value
q ∈ Q = {e−, 0, L,N,H, e+} is a set neighbourhood(q, `) (with ` ∈ N+

and Q being an ordered range space) with elements from Q not farther
that the given `.
`-neighbourhood of a trace T(x)(t0, tF ) defined on the time interval (t0, tF )
with q∗ ∈ Q = {e−, 0, L,N,H, e+} is a trace

neighbourhood(T(x), `)(t0, tF ) = {(t0; neighbourhood(qx0, `), (t1; neighbourhood(qx1, `)), ..., (tF ; neighbourhood(qxF , `))}

Example:
T(h)(1, 3) = {(N), (L), (L)}

neighbourhood(T(h), 1)(1, 3) = {(L,N,H), (0, L,N), (0, L,N)}
Can be used for traces with qualitative measurement error
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Traces and trace distances revisited `-Neighbourhood of traces

Different mappings for trace norm computations
Mapping of qualitative values to real ones by mapping functions

linear

Mlinear (q) =



−1 q = e−
0 q = 0
1 q = L
2 q = N
3 q = H
4 q = e+

non-linear

Mnon−linear (q) =



−10.0 q = e−
−2.0 q = 0
−1.0 q = L

0.0 q = N

10.0 q = H

20.0 q = e+

refined linear

Mfiner (q) =



−1.0 q = ”e − ”

−0.5 q = ”0 − ”

0.0 q = ”0”
0.5 q = ”0L”

1.0 q = ”L”

1.5 q = ”LN”

2.0 q = ”N”

2.5 q = ”NH”

3.0 q = ”H”

3.5 q = ”H + ”

4.0 q = ”e + ”
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Traces and trace distances revisited Coordinate vector form

Coordinate vector form of events and traces

Event mapping function GIO : E 7→ Rr , where r = noimputs + nooutpouts using a
given mapping function MX

7→ event coordinate form , a point in the event state space

Trace coordinate form : a sequence of vectors that represent the events in the
trace in their event coordinate form
7→ path of linear segments in the event state space

Cluster centers

-1-0.5 0 0.5 1 1.5 2 2.5 3 3.5-1
-0.5 0

 0.5 1
 1.5 2

 2.5 3
 3.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

TC

Nominal

TA

TB

TC

-1-0.5 0 0.5 1 1.5 2 2.5 3 3.5-1
-0.5 0

 0.5 1
 1.5 2

 2.5 3
 3.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

TC

TC pos bias

TA

TB

TC

-1-0.5 0 0.5 1 1.5 2 2.5 3 3.5-1
-0.5 0

 0.5 1
 1.5 2

 2.5 3
 3.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

TC

TA pos bias and TC leak

TA

TB

TC

-1-0.5 0 0.5 1 1.5 2 2.5 3 3.5-1
-0.5 0

 0.5 1
 1.5 2

 2.5 3
 3.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

TC

TC leak and TC pos bias

TA

TB

TC

-1-0.5 0 0.5 1 1.5 2 2.5 3 3.5-1
-0.5 0

 0.5 1
 1.5 2

 2.5 3
 3.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

TC

TC leak

TA

TB

TC

-1-0.5 0 0.5 1 1.5 2 2.5 3 3.5-1
-0.5 0

 0.5 1
 1.5 2

 2.5 3
 3.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

TC

TB leak and TC leak

TA

TB

TC

-1-0.5 0 0.5 1 1.5 2 2.5 3 3.5-1
-0.5 0

 0.5 1
 1.5 2

 2.5 3
 3.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

TC

TA-leak

TA

TB

TC

-1-0.5 0 0.5 1 1.5 2 2.5 3 3.5-1
-0.5 0

 0.5 1
 1.5 2

 2.5 3
 3.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

TC

TA and TB leaks

TA

TB

TC

-1-0.5 0 0.5 1 1.5 2 2.5 3 3.5-1
-0.5 0

 0.5 1
 1.5 2

 2.5 3
 3.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

TC

TA and TC leaks

TA

TB

TC

K. Hangos (University of Pannonia) PE Jan 2020 11 / 22



Clustering of traces

Clustering of traces

1 Basic notions

2 Traces and trace distances revisited

3 Clustering of traces
Acquiring characteristic traces using clustering
Model validation

4 The diagnostic procedure

5 A simple example

K. Hangos (University of Pannonia) PE Jan 2020 12 / 22



Clustering of traces Acquiring characteristic traces using clustering

Clustering – basic definitions

1 Given a distance metric D (for example the Euclidean distance).
2 Given a set X , let us denote the number of elements in X by |X |.
3 Given n diagnostic scenarios , let i be the scenario index going from 1

to n.
4 Given a set of traces Y in trace coordinate form , and centroids Z

and W .
Let the relation Y belongs to Z denote the set of traces from Y
which are closer to Z than W using distance metric D.
Similarly, Y belongs to W denotes the set of traces from Y which are
closer to W than Z using distance metric D.
Consequently, |Y | ≥ |Y belongs to C | for every centroid C .
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Clustering of traces Acquiring characteristic traces using clustering

Acquiring characteristic traces

Training phase of diagnosis using characteristic traces

Given: For every fault scenario i a set of traces in trace coordinate form
are provided for creating and validating the centroids. This set is split into
a training set Ti (for creating the centroids) and a validation set Vi (for
performing validation of the centroids).
Compute: the centroid trace Ci for each scenario i .

These centroids are created in single trace coordinate form, and they
might not be equal to any specific input trace of the training set.
A centroid, like a trace is a piece-wise linear trajectory in n
dimensional space where n is the number of outputs, and the length of
the line is the length of the trace (number of events in the trace).
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Clustering of traces Model validation

Validating the characteristic traces

"Validating phase" using independent measured traces – the same as
using the characteristic traces in the diagnostic phase

Fault detection rate: for a given centroid (characteristic trace) Ci

FDRi =
|Vi belongs to Ci |

|Vi |

where Vi is the validation trace set for fault scenario i .

The sequence {FDRi |i = 1...n} also gives an overall fitness of the model
composed of the centroids Ci .
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The diagnostic procedure

The steps of the diagnostic procedure

1 Training phase. Every input trace is converted to trace coordinate form for
every training scenario. Only outputs are participating further in clustering
(the inputs and the sequence numbers are not present in this form).

2 The training and validating sets Ti , Vi and therefrom the characteristic
trace centroids Ci are created for each scenario i = 1, ..., n.

3 The diagnostic model is validated using Ci and sets Vi after all centroids are
determined. FDRi values are calculated for every scenario i = 1, ..., n.

4 Each cluster centre Ci is labeled with the inputs of scenario i and the
particular fault (those are fixed).

5 Diagnosis phase. Given an unknown trace which is converted into trace
coordinate form, the nearest centroid can be determined by computing its
distances from centroids Ci . The fault index i which corresponds to the
nearest centroid is regarded as the most probable fault mode of the system
during the execution of the unknown trace.
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A simple example

The 3-tank system

Controlled composite process system with three tanks that is driven by an
operational procedure

VA

VBVC

VDTC TB

TA

TA

LEVEL

TB

LEVELTC 

LEVEL VE
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A simple example

The considered faults

The leak/rupture of the tank. The size of the leak prevents any fluid
from staying inside of the tank, therefore fluid level constantly stays at
qualitative value 0.

The positive bias failure of the level sensor. The level sensor always detects
a qualitative value one degree higher than the actual level of the tank.

The negative bias failure of the level sensor. The level sensor always
detects a qualitative value one degree lower than the actual level of the tank.

Training sets: formed by simulation using 1 neighbourhood level measurement
error on the traces.
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A simple example

Characteristic trace centroids
Axes represent level output values for the three tanks, with qualitative mapping e− = −1, 0 = 0, L = 1, N = 2,
H = 3. Single dot represents a centroid where all values are the same over time.

Cluster centers
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A simple example

FDR values for single and dual faults

Results with linear mapping function. Scenarios are sorted in ascending order by their FDR value. Values for
TA − leak, TA and TB leaks and TA and TC leaks are smaller than 0.9 hence not shown
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