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Lecture overview

@ Supporting methods for the diagnosis
@ Diagnosis: the problem statement
@ Dynamic analysis
@ Observer design for state estimation

© Dynamic analysis of Petri nets
@ Solution of Petri net models
@ The reachability graph
@ Reachability analysis

© Solution and analysis of CPN models
@ Qualitative models and CPNs
@ CPNs: solution - traces
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Supporting methods for the diagnosis

Supporting methods for the diagnosis

@ Supporting methods for the diagnosis
@ Diagnosis: the problem statement
@ Dynamic analysis
@ Observer design for state estimation

K. Hangos (University of Pannonia) PE Apr 2018 3/ 44



Supporting methods for the diagnosis Diagnosis: the problem statement

Prediction-based diagnosis

General problem statement
Given:

@ The number of faulty modes Nr (O=normal)

Predictive dynamic model for each faulty mode

vy (k+1) = ME(DIL KL pF) k=12,

Measured data record: D[0,k] = { (u(7),y(7) | T=10,--- , k}

Loss function JUF)| i =0, Ng

Dy—y,u) = Z [T, () =y() P (r) , T=1

Compute: The actual faulty mode of the system, i.e. the fault index i that
minimizes the loss function.

Fault isolation
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Supporting methods for the diagnosis Diagnosis: the problem statement

|dentification-based diagnosis

General problem statement
Given:

@ The number of faulty modes N (O=normal)

@ Predictive parametric dynamic model for each faulty mode
Yy (k+1) = MEN(D[L, K], pF) | k=1,2,...
® Measured data record: D0, k] = { (u(7),y(7) | 7=0,--- ,k}

@ Loss function depending on the parameters JIF) i =0,---  Ng

J(Fi)(p(estFi) _ p(Fi)) — p(i)TQp(i) , p(i) — p(estFi) _ p(Fi)

Compute: The actual faulty mode of the system, i.e. the fault index i that
minimizes the loss function.

Fault isolation
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Supporting methods for the diagnosis Dynamic analysis

CT-LTI state-space models

@ General form - revisited
x(t) = Ax(t) + Bu(t) , x(to) = xo
y(t) = Cx(t)

with
e signals: x(t) e R", y(t) e RP |, u(t) e R’
e system parameters: A€ R"™*" B e R"™"  CeRP*" (D=0)
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Supporting methods for the diagnosis Dynamic analysis

Controllability of CT-LTI systems

@ Problem statement
o Given:

@ a state-space model with parameters (A, B, C)
o an initial state x(t1) and a final state x(t2) # x(t1)

o Compute:
an input signal u(t) which moves the system from x(t1) to x(t2) in
finite time
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Supporting methods for the diagnosis Dynamic analysis

Controllability of CT-LTI systems

Theorem (Controllability)
Given (A, B, C) for
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)
This SSR with state space X is state controllable iff the controllability
matrix C,, is of full rank

C,h=[B AB AB . . A"'B]

Kalman rank condition: If dimX = n then rank C, = n.

@ Necessary and sufficient condition
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Supporting methods for the diagnosis Dynamic analysis

Observability of CT-LTI systems

@ Problem statement
o Given:
o a state-space model with parameters (A, B, C)
@ a measurement record of u(t) and y(t) as over a finite time interval

o Compute:
o The state signal x(t) over the finite time interval

e It is enough to compute x(to) = xo

Position in 3D space

——3D position
——Orthogonal projection
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Supporting methods for the diagnosis Dynamic analysis

Observability of CT-LTI systems

Theorem (Observability)
Given (A, B, C). This SSR with state space X is state observable iff the

observability matrix O, is of full rank
- C
CA

ez

Kalman rank condition: If dimX = n then rank O, = n.

@ A necessary and sufficient condition
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Supporting methods for the diagnosis Observer design for state estimation

Observer desing for CT-LT| systems

Problem statement Given:
@ a SISO state-space model with parameters (A, B, C)
@ a finite measurement record of u and y as signals
@ an initial value %

Compute:
An estimate of the state signal x over the finite time interval such that

x(t) — X(t) as t — o0

K. Hangos (University of Pannonia) PE Apr 2018 11 / 44



Supporting methods for the diagnosis Observer design for state estimation

Observer equation

consider the observer

’?C(!:) = AR(t) + Bu(t) + L(y — Cx(t))

Introduce the estimation error signal: X = x — X

x(t)

—= =(A—-LO)X(t
= (A= Lox)

If the matrix A = A — LC is a stability matrix then X — 0 when t — o
(asymptotic stability). Task: find L such that A= A — LC is a stability

matrix
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Dynamic analysis of Petri nets
Dynamic analysis of Petri net models

© Dynamic analysis of Petri nets
@ Solution of Petri net models
@ The reachability graph
@ Reachability analysis
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Dynamic analysis of Petri nets  Solution of Petri net models

Dynamics of Petri nets

Marking function: marking points (tokens)

p:P =N, up)=p>0
u” =t g2y i), n=|P|

Transition fires (operates): when its pre-conditions are "true" (there is a
token on its input places)

pO[t; > p(+D)
after firing the consequences become "true"

Firing (operation) sequence

1Oftjo > pM[tin > [ty > plt)
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Dynamic analysis of Petri nets  Solution of Petri net models

Parallel events

More than one enabled (fireable) transition:
concurrency (independent conditions), conflict, confusion

Py

Ps
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Dynamic analysis of Petri nets  Solution of Petri net models

Conflict resolution

Using inhibitor edges:
priority given by the user
test edges

Other solutions:
capacity of the places
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Dynamic analysis of Petri nets  Solution of Petri net models

Petri net model of a runway — 1

pfp lefog! Kesz e v e

P fp_szabad

Pry teiiog Tresz el Prey
P v_fel
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Dynamic analysis of Petri nets  Solution of Petri net models

Petri net model of a runway — 2

Conflict resolution: landing aircraft has priority

ple

P To_lefogl tkeszfle p v_le

p fp_szabad

t

el Pro taitogr &

kesz fel Prey
p v_fel
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Dynamic analysis of Petri nets  Solution of Petri net models

The solution problem

Abstract problem statement
Given:

@ a formal description of a discrete event system model
e initial state(s)

e external events. system inputs

Compute:
e the sequence of internal (state and output) events

The solution is algorithmic! The problem is NP-hard!
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Dynamic analysis of Petri nets The reachability graph

Petri net models — reachability graph

Solution: marking (systems state) sequences
reachability graph (tree) (weighted directed graph)

@ vertices: markings
@ edges: if exists transition the firing of which connects them

@ edge weights: the transition and the external events

Construction:
@ start: at the given initial state (marking)

@ adding a new vertex: by firing an enabled transition (with the effect of
inputs!)
May be NP—hard (in conflict situation or non-finite operation)
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Dynamic analysis of Petri nets The reachability graph

The state space of Petri net models

State vector: marking in internal places
in- and out-degree is at least 1

x(k) o~ pto

—X

Inputs: marking in input places
in-degree is zero
u(k) ~ H(k)

K. Hangos (University of Pannonia) PE Apr 2018 21 / 44



The reachability graph

Dynamic analysis of Petri nets

Example: garage gate

Petri net model

Pautovar
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Dynamic analysis of Petri nets The reachability graph

Reachability graphs

Finite case

(1,0)
O—F—0O 2
Py t, Py (0, 1)
a, b,
Non-finite case
t1
P3
p1 p2
t2
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Dynamic analysis of Petri nets The reachability graph

Non-finite reachability graph

Reduction: using the w symbol

V"
p7 p2
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Dynamic analysis of Petri nets Reachability analysis

Analysis of Petri net models

Dynamic properties
@ behavioural (initial state dependent)

e structural (only depends on the structure graph)

Behavioural properties
reachabiliy (coverability, controllability)
deadlocks, liveness

boundedness, safeness

(token) conservation

Structural properties

@ state and transition invariant: cyclic behaviour
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Dynamic analysis of Petri nets Reachability analysis

Reachability of Petri net models

The notion of reachability: whether there exists
@ to a given [initial state (H(l))' final state (H(F))] pair

@ a firing sequence, such that

D[t > p D[ty > [t > plP

The notion of coverability:
HHZH/ o V- /‘72/1:'

The same as the usual controllability
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Dynamic analysis of Petri nets Reachability analysis

Boundedness of Petri nets

Related properties to boundedness

e finiteness (boundedness): Is the number of tokens finite for every
initial state?

@ Safeness: the bound is 1 for each place

Can be defined (examined) for the whole net or only for a given set of
places

Conservative Petri net: the number of tokens is constant
(resource-conservation)
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Dynamic analysis of Petri nets Reachability analysis

Liveness of Petri nets

The notion of liveness: from a given initial state
@ for a transition: is there a firing sequence when the transition is active?
o for a set of transition, for the whole net

Deadlock: a non-final state from where there is no enabled (fireable)
transition
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Dynamic analysis of Petri nets Reachability analysis

Simple Petri net examples

Deadlock: the marking (0,1)

(1,0)
O—+—0O "
Py t, P2 (0, 1)
a, b,
Non-bounded place: p3
(1,0,0)
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Dynamic analysis of Petri nets Reachability analysis

Dynamic analysis methods of Petri net models — 1

Analysis of behavioural properties
@ by constructing the reachability graph
@ and searching on the vertices of the graph
@ may be NP-hard

Problems:
@ cyclic behaviour

@ non-bounded places
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Solution and analysis of CPN models
Solution and analysis of CPN models

© Solution and analysis of CPN models
@ Qualitative models and CPNs
@ CPNs: solution - traces
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Solution and analysis of CPN models  Qualitative models and CPNs

The origin of qualitative models

Engineering dynamical models in state-space form:
& = f(x,u) (state eq.)
y = h(x,u) (output eq.)

Qualitative models can be derived systematically from engineering models
by using
@ interval-valued variables and parameters

o simplified equations
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Solution and analysis of CPN models  Qualitative models and CPNs

The derivation of discrete time qualitative DAEs

Dynamic models derived from first engineering principles: continuous time
differential-algebraic equation models

o differential equations originate from conservation balances: to be
transformed to difference equations (time discretization)

o selection of the qualitative range spaces of variables and parameters

o deriving the qualitative form
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Solution and analysis of CPN models  Qualitative models and CPNs

Qualitative signals

Qualitative range spaces
Q={H,N,L 0}, B={0,1}, Qe¢={H,N,L 0, e+,e—}

with High, Low, Normal, error.

A qualitative signal is a signal (input, output, state and disturbance
(fault indicator)) that takes its values from a finite qualitative range set
An event is generated when a qualitative signal changes its value. An
event ex is formally described by a pair ex(t, gx) = (t, [x](t) = gx) where
t is the occurrence time when the qualitative signal [x] takes the value gx.
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Solution and analysis of CPN models  Qualitative models and CPNs

Normalized intervals

Qualitative range space: for variables with "normal" N value
Q={H,N,L 0}, B={0,1}, Qg ={H,N,L,0,e+,e—}

Intervals with non-fixed endpoints

Operation table for interval addition

[a] + [b] 0 L N H
0 0 L N H
L L N H e+
N N H e+ e+
H H e+ e+ e+

This is only a possible definition!
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Solution and analysis of CPN models  Qualitative models and CPNs

Solution of a qualitative DAE

In the form of a solution table
(interval operation table)

@ collect all of the right-hand side variables (time-dependent values!)
@ enumerate all of their signal traces

@ systematically enumerate all of the possible combinations
— exponentially growing size with the number of variables
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Solution and analysis of CPN models  Qualitative models and CPNs

A static example: sensor with additive type fault

Algebraic model equation: v =v + x - E
[v]€ Q, [v]" € Qe, x € B.1 ={-1,0,1}

(VT [ Dd [ I ][ mode ]
N 0 N normal
H 0 H normal
L 0 L normal
0 0 0 normal
e+ 1 H faulty
H 1 N faulty
N 1 L faulty
L 1 0 faulty
N -1 H faulty
L -1 N faulty
0 -1 L faulty
e— -1 0 faulty
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Solution and analysis of CPN models  Qualitative models and CPNs

A dynamic example: mass balance of the coffee machine

Differential equation in discrete form: h" = h+y;-v—xo-Vv
[h],[A]T € Qe, x1,x0 €Band [v] =L
Solution for constant inputs

xo ]

C ™ e [ ]

(N, N, N) N T,1,1) | (1,1,1)
T, L,0) L (LTI | (LLI)
(N, N, N (0,0,0) | (0,0,0)
(e+, e+ H) N (1,1,1) (o..(.).,o)
(e+, H, N) L (1,1,1) | (0,0,0)
(e—-,uo, L) N (0,-(-J.,0) (1,-;,1)
(e—,e—,0) L (0,0,0) (1,1,1)

K. Hangos (University of Pannonia) PE Apr 2018 38 / 44



Solution and analysis of CPN models CPNs: solution - traces

CPN and qualitative models

Coloured Petri Net model (CPN): can be obtained from a qualitative
model

@ colour sets: from the qualitative range space of the variables
@ spaces: associated to variables

@ transitions: associated to the equations (static [output] and dynamic
[state] equations)

Diagnostic applications: the faults should be modelled
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Solution and analysis of CPN models CPNs: solution - traces

Static example: sensor with additive fault 2

CPN modell
Q B.;
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Solution and analysis of CPN models CPNs: solution - traces

Qualitative signals

Qualitative values for variables with "normal" N value
Q={H,N,L0}, B={0,1}, Qs ={H,N, L0, et, e—}

where High, Low, Normal, error.

Qualitative signal: a signal (input, output, state or disturbance (fault
indicator!)) with a qualitative range space

Event: occurs when a qualitative signal changes its value.
Formal description of the event ex:

ex(t, ax) = (¢, [x](t) = ax)

where t is the discrete time instant when the qualitative signal [x] takes the
value gx.
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Solution and analysis of CPN models CPNs: solution - traces

Signal traces — event sequences

The (signal trace) of a qualitative signal [x] is the event sequence

T (to, tr) = {(to; [X](t0) = gx0), (t1; [X](t2)] = Gx1), -, (tr: [X](tF) = qxF)}
defined on the time interval (to, tr) with g, € Oy

A vector-valued trace of multiple signals is defined as 7, 4,,)(to, tF)
Simplified notation: by omitting the time, e.g.

7Eh,T)(1a 3) = {(N’ N)? (Lv H)’ (L’ e+)}

For diagnostic purposes we define
e nominal traces (for describing normal behaviour)

e characteristic traces (for describing faulty behaviour)
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Solution and analysis of CPN models

Simple dynamic example — 1

CPNs: solution - traces

Tank with free outflow: qualitative model equations

[ml(k + 1) = [m](k) + [Vin] (k) = K - [m](k) = Xiea - B

"small" leakage - [B] = L
+ sensor with additive fault

CPN modell:

trartay(1)
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Solution and analysis of CPN models

Simple dynamic example — 2

Solution: qualitative input-output traces

CPNs: solution - traces

] [¥al Doens] * Dol * "]
initial mass input Mow sequence tank SENs0T measured flow sequence
in tank leakage failure
LOW (NORMAL NORMALNORMAL) 0 NEC (LOW, LOW, LOW)
LOW (NOBMALNORMALNGRMALY | T "FOS [ {LOW, LOW, LOW)
HIGH [LOWY, LOW, LOW) 1 1] (LOW, MO MO
HIGH (LOW, TOW, LOW) S NEG [ (LOW, NO, NO)
D NORMAL  (NO, NO, NO) 0 0 (LOW, NO, NOY)
D NORMAL  (NO, NO, NO) I POS (LOW, LOW, LOW)
NORMAL  (NO, Ny, MO 1 MEG (e, e-, &=}
NOBMAL  (NO, NG, NOY 0 POS (NORMAL, LOW, LOW)
D MNORMAL  (NO, NO, NOY 0 NEG (NO, -, e-)
D NORMAL  (NO, NO, NO) 1 ] (N0, NO, MO
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