CCS tutorial-Mathematical basics

1 Vectors and matrices

Given the following real vectors and matrices:

$$x = \begin{bmatrix} 1\\2 \end{bmatrix} \quad , \quad y = \begin{bmatrix} 0\\1\\1 \end{bmatrix} \tag{1}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix} , \quad B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
(2)

- 1. Compute the following transposed quantities:
 - x^T , y^T , A^T , B^T
- 2. Compute when possible

$$A \cdot x$$
 , $B \cdot x$, $A \cdot y$, $B \cdot y$

3. Compute when possible

$$x^T \cdot x \hspace{0.2cm}, \hspace{0.2cm} x^T \cdot A \cdot x \hspace{0.2cm}, \hspace{0.2cm} x^T \cdot B \cdot x \hspace{0.2cm}, \hspace{0.2cm} y^T \cdot x$$

- 4. Compute the **eigenvalues** of the matrices A and B.
- 5. Compute the **inverse matrix** of
 - matrix A
 - $\bullet\,$ matrix B

2 Complex numbers

Complex numbers: $a \in \mathbb{C}$, $a = \alpha + \mathbf{j}\beta$ with $\mathbf{j} = \sqrt{-1}$

- $|a| = r = \sqrt{\alpha^2 + \beta^2}$
- polar (trigonometric) form: $a = r (\cos(\Omega) + \mathbf{j} \sin(\Omega))$
- exponential form: $a = re^{j\Omega} = r(\cos(\Omega) + j\sin(\Omega))$

Given the following complex numbers

$$a = 2 + 3\mathbf{j}$$
, $b = -2\mathbf{j}$, $c = 1$, $d = 5(\cos(\frac{\pi}{2}) + \mathbf{j}\sin(\frac{\pi}{2}))$

- 1. Place a, b, c, d on the complex plane
- 2. Compute the polar and exponential form of a, b, c, d.

3 Complex eigenvalues

Compute the eigenvalue of the matrix

$$A = \left[\begin{array}{rr} 1 & -2 \\ 3 & 1 \end{array} \right]$$

4 Solution of a differential equation

1. Give the solution of the following ordinary differential equation

$$\frac{dx(t)}{dt} = -3x(t) \ , \ x(0) = 1$$

What is $\lim_{t\to\infty} x(t)$?

2. Give the solution of the following ordinary differential equation

$$\frac{dx(t)}{dt} = (-3+3\mathbf{j})x(t) \quad , \quad x(0) = 1$$

What is $\lim_{t\to\infty} x(t)$?