CCS tutorial Random variables, stochastic processes, Stochastic DT-LTI models

1 Random variables

Let us given the scalar-valued Gaussian random variable $\xi \sim \mathbb{N}(1, 4)$, and the vector valued random variable $\eta \sim \mathbb{N}(m_{\eta}, \Delta_{\eta})$ with

$$m_{\eta} = \begin{bmatrix} 1\\2 \end{bmatrix}$$
, $\Delta_{\eta} = \begin{bmatrix} 4&1\\1&4 \end{bmatrix}$

- 1. Plot the probability density functions $f_{\theta}(x)$ and $f_{\chi}(x)$ of random variables θ and χ in the same coordinate system, where θ belongs to a normal distribution with expected value 0 and variance 1 and χ belongs to a normal distribution with expected value 1 and variance 5!
- 2. Compute the mean value and the variance of the transformed random variable $\tilde{\xi} = 2\xi + 1$, where ξ is given above. Is the transformed random variable normally distributed?
- 3. Consider the vector-valued random variable η above.
 - Are its elements, i.e. the scalar-valued random variables η_1 and η_2 independent?
 - Compute the mean value and the variance of the transformed random variable

$$\tilde{\eta} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \eta + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

• Is the transformed random variable normally distributed?

2 Stochastic processes

1. Given a scalar-valued white noise stochastic process $\{e(k)\}_{-\infty}^{\infty}$ with variance σ^2 . Let us construct from it a stochastic process by the equation

$$y(k) = e(k) + 0.5e(k-1) + 0.6e(k-2) + 0.7e(k-3)$$

- What kind of process is the stochastic process $\{y(k)\}_{-\infty}^{\infty}$?
- Compute the mean value function $m_y(k)$ and the (auto)covariance function $r_{yy}(k)$ of the stochastic process $\{y(k)\}_{-\infty}^{\infty}$.
- 2. Consider the following stochastic process:

$$w(k) = z(k) + 0.1z(k-1) + 0.8z(k-3)$$

where z is a sequence of independent scalar valued random variables with the same distribution, E(z(k)) = 0, and $D(z(k)) = \sigma$, for every k:

- What kind of process is the stochastic process w(k) and z(k)?
- Compute the (auto)covariance function $r_{ww}(k)$ for k = 1, 3, -2
- 3. Consider the following two moving-average (MA) processes:

$$\begin{aligned} z(k) &= e(k) + 0.6e(k-1) + 0.1e(k-2) \\ y(k) &= e(k) + 0.3e(k-1) + 0.8e(k-2) \end{aligned}$$

where $\{e(k)\}_{-\infty}^\infty$ is a discrete time white noise process with variance $D^2(e(k))=\sigma^2$

- Compute the cross-covariance function $r_{zy}(k) \ \forall k$.
- 4. Homework

Given a scalar-valued white noise stochastic process $\{e(k)\}_{-\infty}^{\infty}$ with variance σ^2 . Let us construct from it a stochastic process by the equation

$$y(k) = e(k) - 0.2e(k-1)$$

- What kind of process is the stochastic process $\{y(k)\}_{-\infty}^{\infty}$?
- Compute the mean value function $m_y(k)$ and the (auto)covariance function $r_{yy}(k)$ of the stochastic process $\{y(k)\}_{-\infty}^{\infty}$ for the values $k = 0, \pm 1, \pm 2, \pm 3, \ldots$!
- Compute the cross-covariance function $r_{ye}(k)$ for the values $k = 0, \pm 1, \pm 2, \pm 3, \dots!$