CCS tutorial Mathematical statistics, Parameter estimation

1 Vector valued random variables

Let us given two scalar-valued Gaussian random variables $\eta_1 \sim \mathbb{N}(1,4)$, and $\eta_2 \sim \mathbb{N}(2,16)$.

- 1. Plot the probability density functions f_{η_1} and f_{η_2} of random variables η_1 and η_2 in the same coordinate system!
- 2. Let us assume that the random variables η_1 and η_2 are independent and form a vector valued random variable $\eta = [\eta_1, \eta_2]^T$ from them.
 - Which type of distribution does the vector valued random variable η have?
 - Compute the mean value and the variance of the vector valued random variable η .
- 3. (HOMEWORK)

Let us assume that the random variables η_1 and η_2 have a covariance $COV(\eta_1, \eta_2) = 2.3$ and form a vector valued random variable $\eta = [\eta_1, \eta_2]^T$ from them.

- Which type of distribution does the vector valued random variable η have?
- Compute the mean value and the variance of the vector valued random variable η .

2 Parameter estimation

1. Consider a scalar valued random variable ξ and let us have a measured data set about it

$$D(5) = \{0.5, -0.6, 0.3, -0.2, 0.0\}$$

- Compute an estimate of the mean value of ξ .
- Compute an estimate of the variance of ξ .
- Could the measured data be independent? Compute an estimate of $r_{\xi\xi}(1)$.
- 2. Consider the following model that is linear in parameters:

$$y^{(M)} = px$$

- How many parameters does this model have?
- Consider a measured data set consisting of (y_i, x_i) pairs

 $D_1(5) = \{(0.5, 1.0), (0.6, 1.0), (0.3, 1.0), (-0.2, 1.0), (0.5, 1.0)\}$

Compute an estimate of p if possible with its mean value and variance.

3. Consider the following model that is linear in parameters:

$$y^{(M)} = \sum_{j+1}^2 p_j x_j$$

• Consider a measured data set consisting of (y_i, x_{i1}, x_{i2}) values

 $D_2(4) = \{(0.5, 1.0, 1.0), (0.6, 1.0, 1.0), (0.3, 1.0, 1.0), (-0.2, 1.0, 1.0)\}$

Compute an estimate of p if possible with its mean value and co-variance matrix.

- How could you improve the situation? Design a new measurement that makes the estimation possible.
- How many measured data set is needed in the minimal case? Which measurements could you leave out from the data set to still have an estimate.
- 4. Homework

Consider a scalar valued random variable ξ and let us have a measured data set about it

$$D(5) = \{0.1, 0.2, 0.3, 0.4, 0.5\}$$

- Compute an estimate of the mean value of ξ .
- Compute an estimate of the variance of ξ .
- Could the measured data be independent? Compute an estimate of $r_{\xi\xi}(1)$.