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Signals

Overview

© Signals
o Classification of signals
@ Special signals
@ Basic operations on signals
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Signals

Signals — 1

Signal:
time-varying (and/or spatial varying)
quantity
Examples
o xRy =R, x(t)
° y:NS'»—)]R, y[n] =
e X:C—C, X(s)=_5

Blood Alcohol Concentration (mg%)

22285

BUX 2008. aprilis 28. - 2008. jilius 24. TRENDLINES
26172 [ 26172
25614 Fassis
25055 Fasoss
24498 L4408
23840 Lassso
=)
23382 B Lasse
22824 F2asas

21708

21151

2053

20035

19477
18815

200 TRst
6

33 e
o

6
285

‘{ MACD
667

2008.04.28 2008006.0

T T T
« Sysiolic BP

- |

S | Az

- | Functional mean BF ~—.
~U/ a1=eg)

vt
78 o

3 4 s
Time (hours)

angos (University of Pannonia) CcCs

05 1
Time (=)

2017

3/24



Signals — 2

e surface temperature T(r,0,¢,t) on
Earth: T :R* x [0,7] x [0,27] —» R
(r,0, ¢: spherical coordinates, t: time)

o colored TV screen: /: N3 — N3

/R(X7Y7 t)
I(Xv.yat): IG(Xayat)
IB(Xayv t)a
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Signals  Classification of signals

Classification of signals

dimension of the independent variable - only time-dependent vs.
other dependencies

dimension of the signal - scalar vs. vector-valued
real-valued vs. complex-valued

continuous time vs. discrete time

continuous valued vs. discrete valued

bounded vs. unbounded

periodic vs. aperiodic

even vs. odd
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Signals ~ Special signals

Special signals — 1

Dirac-0 or unit impulse function
/ F(1)5(t)dt = £(0)

where f : R4 +— R arbitrary smooth (many
times continuously differentiable) function.
Consequence:

o0
1-0(t)dt =1
—0o0
Physical meaning of the unit impulse:
e force impulse = momentum

@ density impulse = mass point
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Signals ~ Special signals

Special signals — 2

Unit step function

n(t) = /too 5(r)dr,

i.e. 3 ]
0, ift<0 ]
t) = T
T/( ) { 1, |f t 2 0 wb—0 .
Exponential function E ' ! ' !
at
e, aeR
Complex exponential: a € C, a = a+ jQ . /

et = et . & — o2 co5(Qt) + je sin(Q)

[
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Signals ~ Basic operations on signals

Basic operations on signals — 1

e addition:

(x +y)(t) = x(t) + y(t), VteR]
@ multiplication by scalar:

(ax)(t) = ax(t) VteR], a€R
@ scalar product:

{x,y)(t) = (x(t),y(t)) VteRg
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Signals ~ Basic operations on signals

Basic operations on signals — 2

e time shift:
Tax(t)=x(t—a) VteR{,acR
e convolution: x,y : R — R

(x5 y)(t) = /oo x(F)y(t—7)d7, VE>0

—0o0
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Signals ~ Basic operations on signals

Laplace-transformation

Domain:
N={f|f:R{+ C,f integrable on [0,3a], Va > 0 and
JAfr > 0,ar € R, such that |f(x)| < Are®™ Vx>0 }

Laplace-transform (connection with Fourier transform: s = jQ)
F(s) = L{f(t)} = / f(t)e™tdt, felA sc€C, s=0+jQ
0

Properties
e Linear: L{ay1 + ay} = al{n}+ al{wn}
o L{% G ) y(0)
° £{f h(t — T)u(7T)dT} = H(s)U(s)

Inverse Laplace transform

c+joo
f(t) = L7HF(s)} = / ~ F(s)e'ds, t eRY

J c—joo
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Systems
Overview

© Systems
@ System properties
@ System model types
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Systems
Systems

System (S): acts on signals
y = S[4]

e inputs (u € U) and outputs (y € ))
@ abstract operator (S: U — )

System S

inputs outputs
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Systems  System properties

Basic system properties — 1

o Linearity
S[aiur + coua] = ay1 + caye

with ¢, € R, wu,up €U, y1,y» €Y and S[un] = y1, S[ua] =y
Linearity check: use the definition

@ Time-invariance
T,08S=SoT,

where T is the time-shift operator: T, (u(t)) = u(t+ 1), Vt
Time invariance check: constant parameters

u(t) y(t)

S
(t+ Ai
u(r) u(t+At) - 'V(”z 1% f(H <

A Car
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Systems  System properties

Basic system properties — 2

e SISO/MIMO
Single Input-Single Output, or Multiple Input-Multiple Output sytems

e Continuous-time (CT) and Discrete-time (DT) systems
Continuous-time system: the time set 7 C R
Discrete-time system: the time set 7 = {...,t_1, to, t1, t2,... }

o Causality
The present does not depend on the future, only on the past.
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Systems ~ System model types

System model types

e Input-output (I/O) models (for SISO systems in this course)

o time domain
e frequency domain
e operator domain

@ State-space models
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Systems ~ System model types

State-space models

General form

x(t) = F(x(t), u(tg) (state equation)  x(to) = xo0

) (output equation)

@ given initial condition x(tp) = xo ,

o x(t) e R", y(t) € RP, u(t) € R" —signals, time-dependent quantities
@ state equation is a set of differential equations

@ output equation is a set of algebraic equations in the MIMO case

@ system parameters — constants, do not depend on time

K. Hangos (University of Pannonia) CcCs Feb 2017 16 / 24



Construction of state-space models

Overview

© Construction of state-space models
@ Modelling fundamentals - conservation balances
e Tank with gravitational outflow
o Coffee machine
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Construction of state-space models = Modelling fundamentals - conservation balances

Conservation balances

Balance volumes: for constructing conservation balances
@ most often with constant volume
® perfectly stirred (concentrated parameter, the balance is in the form of
ordinary differential equations)
Conserved (extensive) quantities:
@ ovarall mass
@ energy (entalpy, internal energy)

@ component mass, (momentum)

Dynamic conservation balance in general form: for a conserved quantity

rateof | _ [ in- | [ out- o ] source
change |~ | flow flow sink
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Construction of state-space models = Tank with gravitational outflow

Example: tank with gravitational outflow - 1

Problem description

Given a tank with constant cross section that is used for storing water. The water
flows into the tank through a binary input valve, the outflow rate is driven by
gravitation, i.e. depends on the water level in the tank, but it is controlled by a
binary output valve.

k
A 8

Construct the model of the tank for diagnostic purposes if we can measure the
water level and the status of the valves.
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Construction of state-space models = Tank with gravitational outflow

Example: tank with gravitational outflow - 2

Conservation balance equation: for overall mass

d
TT: b — Vi (1)

Constitutive equations

@ m=A-h-p (water level his measurable)
@ vg = vikg (valve status kg is measurable)

@ vk = K- h- kk (gravitational outflow, valve status kx is measurable)
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Construction of state-space models = Tank with gravitational outflow

Example: tank with gravitational outflow - 3

Model equation with measurable variables:

dh 74 K
— = -2ky— —h-k 2
dt  Ap b Ap K (2)
State-space model form

@ state variable: water level h

@ input variables: status of the valves kg and kx

@ output variable: water level h
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Construction of state-space models Coffee machine

Example: Coffee machine - 1

Problem description

Given a tank with constant cross section equipped with an electric heater that is
used for boiling water water. The water flows into the tank through a binary
input valve, and the outflow is also controlled by a binary output valve. The
heater is controlled by a binary switch.

n

=pki—

v,

Construct the model of the coffee machine if we can measure the water level, the
water temperature and the status of the valves and the switch.
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Construction of state-space models Coffee machine

Example: Coffee machine - 2

Conservation balance equation: for overall mass

dMm

dr pPVI — pvo (3)

Conservation balance equation: for internal energy

dE

o cppTivi —cppTvo + kH (4)
Constitutive equations
M = pAh (5)
E = CppAhT (6)
vi=mv , Vo=noVv (7)
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Construction of state-space models Coffee machine

Example: Coffee machine - 3

Model equation with measurable variables:

dh 1 1
g5 = AV Znov (8)
dT 11 1 1 H 1
2o covT s — ST S il
dt ANV = gVt AN )

State-space model form
@ state variables: water level h, temperature T

@ input variables: status of the valves 7, and no, switch x, inlet temperature
T

@ output variable: water level h, temperature T

Parameters: A, H, cp, p, v
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