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Random variables

Scalar-valued random variables

The random variable ξ has a normal or Gaussian distribution, in notation

ξ ∼ N(m, σ2) (1)

if its probability density function (p.d.f.) fξ

fξ(x) =
1√
2πσ

e−
(x−m)2

2σ2 (2)

where m is its mean value and σ2 is its variance.

The mean value and variance of the random variable ξ with its p.d.f. fξ

E{ξ} =

∫
xfξ(x)dx , σ2{ξ} =

∫
(x − E{ξ})2fξ(x)dx
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Random variables Vector-valued random variables

Covariance

The covariance of two scalar-valued random variables ξ és θ

COV {ξ, θ} = E{(ξ − E{ξ})(θ − E{θ})}

The variance of a scalar-valued random variable ξ is the covariance of ξ
with itself :

σ2{ξ} = COV {ξ, ξ} = E{(ξ − E{ξ})2}

Correlation (normed covariance):

ρ{ξ, θ} =
E{(ξ − E{ξ})(θ − E{θ})}

σ{ξ}σ{θ}
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Random variables Vector-valued random variables

Vector-valued random variables

Given a vector valued random variable ξ

ξ : ξ(ω), ω ∈ Ω, ξ(ω) ∈ Rµ

Its mean value m ∈ Rµ is a real vector.

Its variance COV {ξ} is a square real matrix, the covariance matrix:

COV {ξ} = E{(ξ − E{ξ})(ξ − E{ξ})T}

Covariance matrices are positive definite symmetric matrices:

zTCOV {ξ}z ≥ 0 , ∀z ∈ Rµ
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Random variables Vector-valued random variables

Joint probability density functions

The joint probability density function f (x1, ..., xn) of the scalar-valued
random variables ξ1, ..., ξn is an n-variable non-negative function such that

P[a1 ≤ x1 ≤ b1, ..., an ≤ xn ≤ bn] =

∫ b1

a1

...

∫ bn

an

f (x1, ..., xn)dx1...dxn

Two dimensional special case

fξ1,ξ2(x1, x2)

Independence (in the two dimensional case)

fξ1,ξ2(x1, x2) = fξ1(x1) · fξ2(x2)
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Random variables Vector-valued Gaussian random variables

Multi-dimensional Gaussian distribution

A vector-valued random variable ξ has a normal or Gaussian
distribution with mean value m and covariance matrix Σ

ξ ∼ N(m,Σ)

if its elements ξi , i = 1, ..., µ are all normally distributed scalar-valued
random variables.
The probability density function of a vector-valued Gaussian random
variable: with R being a determinant composed from the correlation
coefficients ρij

f (x1, ..., xµ) =
1

√
2πσ1...σµ

√
R
e
− 1

2R

(∑µ
i=1

∑µ
j=1 ρij

(xi−mi )(xj−mj )

σ1σ2

)
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Random variables Vector-valued Gaussian random variables

Two dimensional Gaussian distribution

Probability density function:

f (x1, x2) =
1

2πσ1σ2
√

1− r2
e
− 1

2(1−r2)

(
(x1−m1)2

σ2
1

−2r (x1−m1)(x2−m2)
σ1σ2

+
(x2−m2)2

σ2
2

)
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Random variables Vector-valued Gaussian random variables

Linearly transformed random variables

Let us transform the vector-valued random variable ξ(ω) ∈ Rn using the
non-singular square transformation matrix T ∈ Rn×n:

η = T ξ

The properties of the vector-valued random variable η:

E{η} = TE{ξ} , COV {η} = TCOV {ξ}TT

If the random variable ξ has a Gaussian distribution N(mξ,∆ξ) with mean
value mξ and covariance matrix ∆ξ, then the transformed random variable
η will also be Gaussian N(mη,∆η), where

mη = Tmξ , ∆η = T∆ξT
T
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Discrete time stochastic processes Stochastic processes

Stochastic processes – 1

Stochastic processes are used for describing random disturbances in
systems and control theory.

Stochastic process
family of random variables x(., .) where

x : T × Ω→ Rp

The set T is called time.
continuous time process: T ⊆ R
discrete time process: T ⊆ N
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Discrete time stochastic processes Stochastic processes

Stochastic processes – 2

Realization
the (deterministic) function x(., ω0) with ω0 being fixed

Fixed-time value
x(t0, .) with t0 is being fixed is a random variable

Notation
x(t, .) = x(t) for the random variable generated from the stochastic
process x by fixing the time at t
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Discrete time stochastic processes Distribution functions

Distribution functions

A stochastic process can be specified by describing all of its finite
dimensional distribution functions

Definition
A finite dimensional distribution function of a stochastic process is defined
by the formulae

F (ζ1, ..., ζn; t1, ..., tn) = P{x(t1) ≤ ζ1, ..., x(tn) ≤ ζn}

Gaussian or normal process all finite dimensional distribution functions of
the process are Gaussian.
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Discrete time stochastic processes Mean value and covariance

Mean value and covariance

Definition (mean value function)

The mean-value function of the stochastic process x is as follows

mx(t) = Ex(t) =

∫ ∞
−∞

ζdF (ζ, t)

Note that mx(t) is an ordinary (deterministic) function of time t.

Definition (covariance function)

The (auto)covariance function of the stochastic process x is defined as

rxx(s, t) = cov [x(s), x(t)] = E{ [x(s)−m(s)][x(t)−m(t)]T }

The covariance function is a deterministic two-variate function.
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Discrete time stochastic processes Stationary stochastic processes

Stationary stochastic processes

Definition (stationary stochastic process)

A stochastic process x is termed stationary if all of its finite dimensional
distribution functions on x(t1), ..., x(tn) are identical to that on
x(t1 + τ), ..., x(tn + τ) for all τ .
The process is termed weakly stationary if the two first moments of the
distribution functions are the same for all τ , i.e.

m(t) = const , rxx(s, t) = rxx(t − s)

.
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Discrete time stochastic processes White noise processes

White noise processes

Definition (discrete time white noise, e)

A stochastic process e = {e(θ)}∞θ=−∞ is a discrete time white noise process
if it is a sequence of identically distributed, independent random variables.

Properties

stationary process (usually m(t) = 0 is assumed)
the covariance function in real-valued case is

ree(t) = cov [e(s), e(s − t)] =

{
σ2 t = 0
0 t = ±1,±2, ...

A white noise process is not necessarily a Gaussian process.
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Discrete time stochastic processes White noise processes

MA processes

Definition (moving average process (MA process))

Let e = { e(k) , k = ...,−1, 0, 1, 2, ...} be a white noise process with
variance σ2. Then the related process y = {y(t)}∞t=−∞ which fulfils

y(k) = e(k) + b1e(k − 1) + ...+ bne(k − n) = B∗(q−1)e(k)

is termed a MA process.

Mean value and auto-covariance function of a MA process

my (t) = 0, ryy (0) = σ2(1+b2
1+...+b2

n), ryy (1) = σ2(b1+b1b2+...+bn−1bn)
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Discrete time stochastic processes White noise processes

AR and ARMAX processes

Definition (autoregressive process (AR process))

With the white noise process e = {e(t)}∞t=−∞ above an AR process is
defined as follows

y(k) + a1y(k − 1) + ...+ any(k − n) = A∗(q−1)y(k) = e(k)

Definition (ARMAX process)

An autoregressive-moving average process with an exogeneous signal
(ARMAX process) is a linear combination an AR and MA process extended
with an exogeneous signal u = {u(t)}∞t=−∞:

A∗(q−1)y(k) = B∗(q−1)u(k) + C ∗(q−1)e(k)

with A∗(q−1) = 1 + a1q
−1 + anq

−n, B∗(q−1) = b0 + b1q
−1 + bmq

−m,
C ∗(q−1) = 1 + c1q

−1 + cnq
−n and m < n.
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Discrete time stochastic processes General representation theorem

General representation theorem

Theorem
Every stationary discrete time stochastic process x = {x(k)}∞−∞ with finite
1st and 2nd momenta can be represented in ARMA form as

A∗(q−1)x(k) = B∗(q−1)e(k)

where {e(k)}∞−∞ is a white noise process (not necessarily Gaussian!) and
A∗(z) is a stable, B∗(z) is a stable or not unstable polynomial.

Interpretation: Every stationary discrete time stochastic process
{x(k)}∞−∞ can be viewed as the output of a stable discrete time LTI system
with pulse transfer operator H(z) = B∗(z)

A∗(z) and with white noise input.
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Preliminary notions from DT systems DT-LTI state-space models

DT-LTI state-space models

x(k + 1) = Φx(k) + Γu(k) (state equation)
y(k) = Cx(k) + Du(k) (output equation)

with given initial condition x(0) and

x(k) ∈ Rn , y(k) ∈ Rp , u(k) ∈ Rr

being vectors of finite dimensional spaces and

Φ ∈ Rn×n , Γ ∈ Rn×r , C ∈ Rp×n , D ∈ Rp×r

being matrices
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Preliminary notions from DT systems DT-LTI SISO I/O system models

DT-LTI SISO I/O system models

Discrete difference equation models: for SISO systems
Forward difference form

y(k +na)+a1y(k +na−1)+ ...+anay(k) = b0u(k +nb)+ ...+bnbu(k)

with na ≥ nb (proper).
Compact form

A(q)y(k) = B(q)u(k) ,
A(q) = qna + a1q

na−1 + ...+ ana , B(q) = b0q
nb + b1q

nb−1 + ...+ bnb

Backward difference form

y(k)+a1y(k−1)+...+anay(k−na) = b0u(k−d)+...+bnbu(k−d−nb)

where d = na − nb > 0 is the pole excess (time delay).
Compact form

A∗(q−1)y(k) = B∗(q−1)u(k − d) , A(q) = qnaA∗(q−1)

K. Hangos (University of Pannonia) CCS March 2017 22 / 28



Discrete time LTI stochastic system models

Overview

1 Random variables

2 Discrete time stochastic processes

3 Preliminary notions from DT systems

4 Discrete time LTI stochastic system models
DT-LTI stochastic SISO I/O model
DT-LTI stochastic state-space model

K. Hangos (University of Pannonia) CCS March 2017 23 / 28



Discrete time LTI stochastic system models DT-LTI stochastic SISO I/O model

DT-LTI stochastic SISO I/O model

Definition (discrete time stochastic LTI input-output model)

The general form of the input-output model of discrete time stochastic LTI
SISO systems is the following canonical ARMAX process:

A(q)y(k) = B(q)u(k) + C (q)e(k) (3)

with the polynomials

A(q) = qn + a1q
n−1 + ...+ an , C (q) = qn + c1q

n−1 + ...+ cn

B(q) = b0q
m + b1q

m−1 + ...+ bm

where C (q) is assumed to be a stable polynomial.
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Discrete time LTI stochastic system models DT-LTI stochastic state-space model

DT-LTI stochastic state-space model

x(k + 1) = Φx(k) + Γu(k) + v(k)
y(k) = Cx(k) + e(k)

Φ ∈ Rn×n , Γ ∈ Rn×r , C ∈ Rp×n

and with independent discrete time zero mean Gaussian white noise
processes {v(k)}∞0 and {e(k)}∞0

E [v(k)vT (k)] = R1 , E [v(k)vT (j)] = 0 , ∀ k 6= j
E [v(k)eT (j)] = 0 , ∀ k , j
E [e(k)eT (k)] = R2 , E [e(k)eT (j)] = 0 , ∀ k 6= j

Initial conditions

Ex(0) = m0 , cov [x(0)] = R0

Parameters:
(Φ, Γ,C ; R1,R2 ; m0,R0)
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Discrete time LTI stochastic system models DT-LTI stochastic state-space model

DT-LTI stochastic difference equations

Definition (linear stochastic difference equation)

is in the form
x(k + 1) = Φx(k) + v(k)

where {v(k)}∞0 is a discrete time white noise process and v(k) is
independent of x(k).

The solution of the equation above is a stochastic process {x(k)}∞0 itself.
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Discrete time LTI stochastic system models DT-LTI stochastic state-space model

Solution of the state equation

x(k + 1) = Φx(k) + v(k)

Mean value function m(k is the solution of

m(k + 1) = Φm(k) , m(0) = m0

Covariance function:

P(k) = cov [x(k), x(k)] = E{x(k)xT (k)} , x(k) = x(k)−m(k)

x(k + 1)xT (k + 1) = [Φx(k) + v(k)][Φx(k) + v(k)]T =
= Φx(k)xT (k)ΦT + Φx(k)vT (k) + v(k)xT (k)ΦT + v(k)vT (k)

P(k + 1) = ΦP(k)ΦT + R1 , P(0) = R0
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Discrete time LTI stochastic system models DT-LTI stochastic state-space model

The output process

We associate the output stochastic process {y(k)}∞0 to the solution of the
linear stochastic difference equation (the state equation) by the equation

y(k) = Cx(k)

where C is a constant matrix then

my (k) = Cm(k) , ryy = CP(k)CT
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