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Preliminary notions
Systems

System (S): acts on signals

y =S[y]
e inputs (u) and outputs (y)
t t
ut) System S yQ)
inputs outputs
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Preliminary notions
CT-LTI system models

Input-output (I/0O) models for SISO systems
@ time domain

@ operator domain

State-space models
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Preliminary notions

CT-LTI /O system models (SISO)

Transfer function — Linear diff. equation model

d"y dn-t d
E{a,, — +an-1 dt”—{ + ..+ ald—}; +agy} =
du d™u
= L{b bi— + ... + bp——
L{bou + 1dt+ + dt’"}

_ Y(s) _ b(s)
)= Ts) = (s)

Transfer function — Impulse response function

H(s) = L{h(t)}
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Preliminary notions
CT-LTI state-space models

General form

x(t) = Ax(t) + Bu(t) (state equation)
y(t) = Cx(t) + Du(t) (output equation)

with
@ given initial condition x(tp) = x(0) and x(t) € R",
o y(t)eRP, u(t) e R"
@ system parameters

AeR™"  BeR™  CeRP" DeRP*
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Sampling

Sampling

System elements for sampling

Continuous
i t
u(t) D/A u) ] e
)
system S

Discrete-time system

Discrete-time
control

algorithm

Computer
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Sampling

Zero order hold sampling

Operation of the D/A converter

CT signal

14 —u— ZOH sampled signal

1.2

signal

0.8

0.6

time
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Sampling
Sampling of CT-LTI systems

Given:
x = Ax+ Bu
y=Cx+ Du

Zero order hold sampling of u
u(t) = u(ty) = u(k) , tx <7< trsr

Equidistant (periodic) sampling: tx,1 — tx = h = const

Compute:
the state-space model of the sampled (discrete time) system

March 2017
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Sampling

Sampled state equations - 1

Use the solution of the continuous time state equation

t
x(t) = A1) x (1) + / A7) By(r)dr

to

Substitute t = tx11 and to = tx with periodic sampling (h = (tx+1 — tk))
and 0 = 7 — ty.
Denote x(k) = x(tx) and x(k + 1) = x(tx+1)

h
x(k +1) = eAhx(k) + e /0 =40 40 Bu(K)

Discrete time state equation

x(k +1) = eMx(k) + A7 (A" — 1) Bu(k)
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Sampling

Sampled state equations - 2

DT-LTI state equation for sampled systems

x(k+1) = &x(k) + lu(k)
d=eM=I+Ah+.. , T=ANeM-)B=(h+4"+ )B

Matrix exponential function
Given A € R™" and the real-valued exponential function e : R— R
Take the Taylor-series expansion of e around t =0

et=1+t+= t + .. +

Substitute t =Aand 1 =/

1 1 .
A:I+A+§A2+...+J_—IAJ+... c R™"
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DT-LTI system models
DT-LTI state-space models

x(k +1) = dx(k) + Tu(k) (state equation)
y(k) = Cx(k) + Du(k) (output equation)

with given initial condition x(0) and
x(k) e R" | y(k) e RP | u(k) e R
being vectors of finite dimensional spaces and
SeR™" , TeR™ , CeRP", DeRP*

being matrices
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DT-LTI system models
Transformation of states

x(k+1) = &x(k) +Tu(k) , X(k+1)=®x(k)+ Tu(k)
y(k) = Cx(k) + Du(k) . y(k) = Cx(k) + Du(k)

which are related by the transformation
TeR™™  det T#0 , x=Tx = x=T!x
dm X =dim X =n
T Ix(k +1) = dTIx(k) + Tu(k)
X(k+1)= TOTR(k) + TTu(k) , y(k)= CT'x(k)+ Du(k)
S=ToT! r=T7r C , D=D

)
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DT-LTI system models

Solution of the DT-LTI state equation

x(1) = &x(0) + I'u(0)
x(2) = &x(1) + Tu(1) = ®2x(0) + dru(0) + u(1)
x(2) 4+ Tu(2) = ®3x(0) + P2Tu(0) + Pru(l) + Fu(2)

X
—~~
w
~

I
©

;;(k) = &x(k — 1)+ Tu(k — 1) = d¥x(0) + ZJ’-‘;(} S u())

K. Hangos (University of Pannonia) March 2017 13 /21



DT-LTI SISO 1/0 system models — Pulse response function

From the solution of the state equation with D =0

x(k) = dx(k — 1) + Tu(k — 1) = Okx(0) + I dFI=1ru(j)
y(k) = Cx(k) = Cokx(0) + Y3 Cok=i=1ru(j)

Pulse response function

0 k<1
h(k)_{ COIr k>1
The discrete time analogue of the impulse response function.

Discrete time Markov parameters: CO<—1T

@ they are invariant for the state LTI transformations (X = Tx)
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DT-LTI system models
Discrete time signals

f={f(k),k=0,1,..}

Signal norms for scalar valued discrete time signals

e the infinity norm
[1#]le0 = sup |£(K)|

@ the 2-norm

IFIE=" (k)

k=—o0
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DT-LTI system models
Shift operators

Definition (forward shift operator q)

which acts on a discrete time signal as follows

gf (k) = f(k +1) (1)

Definition (backward shift operator (delay) g 1)

which acts on a discrete time signal as follows

q ' f(k) = f(k—1) (2)

@ The induced norm of an operator g on the vector space X induced
by a norm ||.|| on the same space is defined as
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DT-LTI system models

DT-LTI SISO 1/O system models — Discrete difference

equation models

e Forward difference form with n, > n, (proper)
y(k+na)+aiy(k+ns—1)+...+an,y(k) = bou(k+np)+ ...+ bn,u(k)
Compact form

A(q)y(k) = B(q)u(k)
A(Q)=q™ +a1q™ t + ...+ an, , B(q) = boq™ + b1q"™ 1 + ... + by,

e Backward difference form where d = n, — np, > 0 is the pole excess
(time delay)

y(k)+ary(k—1)+...4an,y(k—n,) = bou(k—d)+...4+bn,u(k—d—np)

A (g Ny(k) = B (g ")u(k—d) , A*(g")=q™A(q"), B*(¢ ") =gq

K. Hangos (University of Pannonia) March 2017 17 / 21



DT-LTI system models
DT-LTI SISO 1/O system models — Pulse transfer operator

@ Computed from the DT-LTI state-space model
x(k+1) = &x(k)+Tu(k) , y(k) = Cx(k)+ Du(k)
x(k 4+ 1) = gx(k) = dx(k) + Tu(k)
x(k) = (gl — ®) *Fu(k)
y(k) = Cx(k) + Du(k) = [C(ql — ®)71T + D]u(k)
Pulse-transfer operator H(q) of the SSR (¢, T, C, D):
H(q) = C(q/ — )T+ D

The discrete time analogue of the transfer function.
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DT-LTI system models
DT-LTI SISO 1/O system models — Pulse transfer operator

e For SISO LTI systems H(q) is a rational function

B
H(q) = C(ql —®)7'T+ D = AEZi , deg B(q) < deg A(q) =n
where A(q) is the characteristic polynomial of the state matrix ®.

@ Relation with the discrete difference equation form

y(k+n)+aiy(k+n,—1)+ ...+ any(k) =
= bou(k + np) + ... + by, u(k)

A(q)y(k) = B(q)u(k)
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DT-LTI system models
Poles of DT-LTI systems — 1

o Comparison

continuous time system discrete time system

state eq.  x(t) = Ax(t) + Bu(t) x(k+1) = dx(k)+ lu(k)

o = AP
output eq. y(t) = Cx(t) y(k) = Cx(k)
poles Ai(A) Ai(®)

Ai(®) = eti(Ah
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DT-LTI system models

Poles of DT-LTI systems — 2
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