Model building using engineering principles Dynamic chemical and biochemical models

Katalin Hangos

University of Pannonia Department of Electrical Engineering and Information Systems

2019.04.12.

Lecture overview

- Chemical and biochemical systems
 - Characterization of chemical and biochemical systems
- 2 Balance equations in chemical and biochemical systems
 - Overall mass balances
 - Component mass balances
 - Energy balances

3 Constitutive equations in chemical and biochemical systems

- Extensive-intensive relationships
- Reaction rate equations
- Chemical property relations
- State space model form of dynamic chemical and biochemical models
 - Component mass balance equations in intensive variable form

Characterization of chemical and biochemical systems

Characterization: through modelling objects and mechanisms

- Modelling objects: spatially homogeneous (perfectly stirred) balancing volumes with chemical reactions as the simplest case
- Mechanisms

We have the mechanisms that characterize thermal energy systems, and the following special ones:

- *Chemical reactions*: the rate expression is a polynomial function of the concentrations (mass action law), or it is a rational function of the concentration (biochemical kinetics).
- Chemical reactions have a thermal effect
 - (i) the reaction rate depends on the temperature through k (a physico-chemical property)- an exponential type relationship.
 - (ii) chemical reactions produce/consume energy that is proportional to the reaction rate – an induced energy term in the energy balance

Balance equations in chemical and biochemical systems

Chemical and biochemical systems

Balance equations in chemical and biochemical systems

- Overall mass balances
- Component mass balances
- Energy balances

3 Constitutive equations in chemical and biochemical systems.

4 State space model form of dynamic chemical and biochemical models

Balance volumes and conserved extensive quantities

Balance volumes: perfectly stirred

VO. CA

Conserved extensive quantities:

- overall mass m
- component masses m_{X_k} , k = 1, ..., K
- energy U

For perfectly stirred balance volumes

- no source or sink term if the balance volume is connected to the environment only. Otherwise, the phase changes (evaporation, boiling, melting, etc.) may generate a mass source or sink through the interphase boundary.
- convective terms are the in- and out-flows entering or leaving the balance volume, that are mass flows [kg/s].

$$\frac{dm}{dt} = v_I - v_O$$

Associated measurable quantity: level (e.g. with constant cross section)

For perfectly stirred balance volumes

- induced component in- and out-flow terms are the inlet and outlet component mass flows entering or leaving the balance volume, that are mass flows [kg/s]
- source or sink term: reaction rates R_i , $i = 1, ..., \mathcal{R}$ in units $[mol/(kg \cdot s)]$ caused by the chemical reactions

$$\frac{d(m \cdot c_A)}{dt} = v_I \cdot c_{IA} - v_O \cdot c_A - m \cdot R$$

Associated measurable quantity: concentrations c_{X_k} , k = 1, ..., K in units [mol/kg] (or $[mol/m^3]$)

For perfectly stirred balance volumes

- induced convective energy flows induced by the convective mass flows of a balance volume (in unit [J/s]),
- source or sink terms caused by the chemical reaction of reaction enthalpy ΔH (in unit [J/kg]) together with the usual external (e.g. electrical) heating/cooling or heat transfer terms Q (again in unit [J/s]).

$$\frac{dU}{dt} = c_{pl}v_lT_l - c_pv_OT - \Delta H \cdot m \cdot R + Q$$

Associated measurable quantity: temperature

Constitutive equations in chemical and biochemical systems

Chemical and biochemical systems

2 Balance equations in chemical and biochemical systems

Sonstitutive equations in chemical and biochemical systems

- Extensive-intensive relationships
- Reaction rate equations
- Chemical property relations

4 State space model form of dynamic chemical and biochemical models

Constitutive equations – Extensive-intensive relationships

For perfectly stirred balance volume with constant pressure and for the component *A*

$$m_A = m \cdot c_A$$

where *m* is the overall mass, m_A is the component mass, and c_A is the concentration of component *A* measured in unit [mol/kg].

$$m = V \cdot \rho$$

where V is the volume, m is the overall mass and ρ is the density of the balance volume.

2019.04.12. 10 / 18

Constitutive equations – Reaction rate equations 1.

1 mass action law reaction rates

• elementary reaction steps: *irreversible reactions*:

$$\sum_{i=1}^{K} \alpha_{ij} \mathbf{X}_i \to \sum_{i=1}^{K} \beta_{ij} \mathbf{X}_i \quad j = 1, ..., r$$
(1)

where X_i denotes a *chemical component* and the

- stoichiometric coefficients α_{ij} and β_{ij} are always non-negative integers
- reaction rate expression

$$R_j = k_j \prod_{i=1}^n c_i^{\alpha_{ij}}$$

• $k_j > 0$ is the reaction rate coefficient of the *j*th reaction, that is always positive

2019.04.12. 11 / 18

Example – MAL reaction rate equations

• Simple linear example

Let us assume a simple reaction kinetic system with two irreversible steps and three components

$$\boldsymbol{X}_1 \to \boldsymbol{X}_2 \to \boldsymbol{X}_3$$

Then the reaction rate equations are

$$R_1 = k_1 c_1 \quad , \quad R_2 = k_2 c_2$$

• Simple nonlinear example

Now we consider a simple elementary reaction step

$$2\mathbf{A} + \mathbf{B} \rightarrow \mathbf{C}$$

Then the reaction rate equation is

$$R = kc_A^2 c_B$$

Constitutive equations – Reaction rate equations 2.

2 biochemical reaction rates

elementary reaction

 $\mathbf{X} + \mathbf{X}_B \rightarrow$

where ${\bf X}_{\cal B}$ is the biologically active component (e.g. the biomass), ${\bf X}$ is the substrate

"monod type" reaction rate expression

$$R(c,c_B) = k \cdot c \cdot \frac{c_B}{k_B + c_B}$$

 c_B is the concentration of the biologically active component, c is that of the substrate with k and k_B being positive constant coefficients

• second order "monod type" reaction rate expression

$$R(c, c_B) = k \cdot c \cdot \frac{c_B}{k_B + c_B + k_{B1}c_B^2}$$

where k_{B1} is also a positive constant

Constitutive equations – Chemical property relations

i Reaction rate coefficient relations – Arrhenius law

$$k = k_0 \cdot e^{-\frac{E}{RT}}$$

where $k_0 > 0$ is the pre-exponential factor, E > 0 is the activation energy and R is the universal gas constant

ii Reaction enthalpy relations – only the temperature dependence is considered

$$\Delta H = H_0 \cdot \left(1 + c_{H1}(T - T_0) + c_{H1}(T - T_0)^2\right)$$

where T_0 is a suitable reference temperature, H_0 is the reaction enthalpy at the reference temperature, and c_{Hi} , i = 1, 2 are constants

From the extensive form of the dynamic component mass balance equation

- The conservation balance equations should be transformed to have measurable (mostly intensive) quantities in them.
- The constitutive algebraic equations should be substituted into the differential ones (if possible).

Component mass balance equations in intensive form -1

Assumptions for the transformation steps

- F1 A single perfectly stirred balance volume with a single $\mathbf{A} \rightarrow \mathbf{B}$ type chemical reaction is considered with overall mass m and internal energy U.
- F2 One in- (v_l) and one out-flow (v_O) is assumed, that are mass flows [kg/s].
- F3 Constant thermodynamical properties are assumed.
- F4 The component concentrations c_A and c_B are measured in [mol/kg], and the unit of the reaction rate R is [mol/kg/s], accordingly.

Original equations Mass balance

$$\frac{dm}{dt} = v_I - v_O$$

Component mass balance

$$\frac{d(m \cdot c_A)}{dt} = v_I \cdot c_{IA} - v_O \cdot c_A - m \cdot R$$

Katalin Hangos (University of PannoniaDModel building using engineering principle

Component mass balance equations in intensive form -2

Original equations Mass balance

$$\frac{dm}{dt} = v_I - v_O$$

Component mass balance

$$\frac{d(m \cdot c_A)}{dt} = v_I \cdot c_{IA} - v_O \cdot c_A - m \cdot R$$

with

$$m\frac{dc_A}{dt} + c_A\frac{dm}{dt} = v_I \cdot c_{IA} - v_O \cdot c_A - m \cdot R$$

State equation originating from the component mass balance

$$\frac{dc_A}{dt} = \frac{v_I}{m} \cdot (c_{IA} - c_A) - R$$

Katalin Hangos (University of PannoniaDModel building using engineering principle

2019.04.12.

17 / 18

State space model in chemical and biochemical systems

- State equations: overall mass balances, component mass balances and energy balances in intensive form
- State variables: for each balance volume i

$$x = [m_i, (c_{X_k,i}, k = 1, ..., K), T_i | i = 1, ..., N]^T$$

2019.04.12

18 / 18

• **Output variables**: non-input variables that we can directly measure