Számítógéppel irányított rendszerek elmélete

Joint Controllability and Observability

Hangos Katalin

Villamosmérnöki és Információs Rendszerek Tanszék

Folyamatirányítási Kutató Csoport MTA Számítástechnikai és Automatizálási Kutató Intézete Budapest

e-mail: hangos@scl.sztaki.hu

BASIC NOTIONS (from previous lectures) CT-LTI state-space models

General form - revisited

$$\dot{x}(t) = Ax(t) + Bu(t) \quad , \quad x(t_0) = x(0)$$
$$y(t) = Cx(t)$$

with

- signals: $x(t) \in \mathcal{R}^n$, $y(t) \in \mathcal{R}^p$, $u(t) \in \mathcal{R}^r$
- system parameters: $A \in \mathcal{R}^{n \times n}$, $B \in \mathcal{R}^{n \times r}$, $C \in \mathcal{R}^{p \times n}$ (D = 0 by using **centering** the inputs and outputs)

Dynamic system properties:

- observability
- controllability

Observability of CT-LTI systems – 2

A necessary and sufficient condition.

Theorem 1 (O) Given (A, B, C). This SSR with state space \mathcal{X} is state observable *iff* the observability matrix \mathcal{O}_n is of full rank

$$\mathcal{D}_n = \begin{bmatrix} C \\ CA \\ \cdot \\ \cdot \\ CA^{n-1} \end{bmatrix}$$

Kalman rank condition: If $dim \mathcal{X} = n$ then $rank \mathcal{O}_n = n$.

Controllability of CT-LTI systems – 2

A necessary and sufficient condition. **Theorem 2 (C)** Given (A, B, C) for

 $\dot{x}(t) = Ax(t) + Bu(t)$ y(t) = Cx(t)

This SSR with state space \mathcal{X} is state controllable *iff* the controllability matrix C_n is of full rank

$$\mathcal{C}_n = \left[\begin{array}{ccccccc} B & AB & A^2B & . & . & A^{n-1}B \end{array} \right]$$

Kalman rank condition: If $dim \mathcal{X} = n$ then $rank \mathcal{O}_n = n$.

CT-LTI I/O system models – 3

Operator domain I/O model for SISO systems

Transfer function

Y(s) = H(s)U(s)

assuming zero initial conditions with

Y(s) U(s) $H(s) = \frac{b(s)}{a(s)}$

Laplace-transform of the output signal Laplace-transform of the input signal *transfer function of the system* where a(s) and b(s) are polynomials and $degree \ b(s) = m$ $degree \ a(s) = n$

$$H(s) = C(sI - A)^{-1}B + D$$

Markov parameters

$$\begin{aligned} x(t) &= e^{At} x(0) + \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau \\ y(t) &= C x(t) + Du(t) \end{aligned}$$

Thus the *impulse response function* (with D = 0 and $u(t) = \delta(t)$)

$$h(t) = Ce^{At}B = CB + CABt + CA^2B\frac{t^2}{2!} + \dots$$

Markov parameters

$$CA^{i}B$$
 , $i = 0, 1, 2, ...$

are invariant under state transformation.

PRELIMINARIES

Overview - 1

Overview - 2

Consider **SISO** CT-LTI systems with realization (A, B, C)

- Joint controllability and observability is a **system property**
- Equivalent necessary and sufficient conditions
- Minimality of SSRs
- Irreducibility of the transfer function

Hankel matrices

Definition

A Hankel matrix is a block matrix of the following form

It contains *Markov parameters* CA^iB that are invariant under state transformations.

Lemma 1

Lemma 1: If we have a system with transfer function $H(s) = \frac{b(s)}{a(s)}$ and there is an *n*-th order realization (A, B, C), which is controllable and observable then all other *n*-th order realizations are controllable and observable.

Proof

$$\mathcal{O}(C,A) = \begin{bmatrix} C \\ CA \\ \cdot \\ \cdot \\ \cdot \\ CA^{n-1} \end{bmatrix} , \quad \mathcal{C}(A,B) = \begin{bmatrix} B & AB & A^2B & \cdot & \cdot & A^{n-1}B \end{bmatrix}$$

 $H[1, n-1] = \mathcal{O}(C, A)\mathcal{C}(A, B)$

REALIZATIONS IN SPECIAL FORM: Controller form realization

Controller form realization

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t)$$

with

$$A_{c} = \begin{bmatrix} -a_{1} & -a_{2} & \cdots & -a_{n} \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \vdots & 1 & 0 \end{bmatrix}, B_{c} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ \vdots \\ 0 \end{bmatrix}$$
$$C_{c} = \begin{bmatrix} b_{1} & b_{2} & \cdots & b_{n} \end{bmatrix}$$

with the coefficients of the polynomials $a(s) = s^n + a_1 s^{n-1} + ... + a_{n-1} s + a_n$ and

 $b(s) = b_1 s^{n-1} + ... + b_{n-1} s + b_n$ that appear in the transfer function $H(s) = \frac{b(s)}{a(s)}$

Definitions

- **Definition**: *relative prime polynomials* Two polynomials a(s) and b(s) are *coprime* (or relative primes) iff $a(s) = \prod (s - \alpha_i)$; $b(s) = \prod (s - \beta_j)$ and $\alpha_i \neq \beta_j$ for all i, j.
- In other words: the polynomials have no common factors.

Definition: *irreducible transfer function*

A transfer function $H(s) = \frac{b(s)}{a(s)}$ is called to be irreducible if the polynomials a(s) and b(s) are relative primes.

Lemma 2

Lemma 2: If there exists a controller form realization which is jointly controllable and observable then a(s) and b(s) are relative primes (H(s) is irreducible).

Proof

1. A controller form realization is controllable and

$$\mathcal{O}_c = \tilde{I}_n b(A_c)$$

$$\tilde{I}_{n} = \begin{bmatrix} 0 & . & . & 1 \\ 0 & . & 1 & 0 \\ . & . & . & . \\ 1 & 0 & . & 0 \end{bmatrix} \in \mathcal{R}^{n \times n}$$

2. Non-singularity of $b(A_c)$

Proof of Lemma 2 – 1

$$\tilde{I}_{n} = \begin{bmatrix} e_{n} & e_{n-1} \\ e_{n-1} & \vdots \\ \vdots \\ \vdots \\ e_{1}^{T} \end{bmatrix} = \begin{bmatrix} e_{n}^{T} \\ e_{n-1}^{T} \\ \vdots \\ \vdots \\ e_{1}^{T} \end{bmatrix} , e_{i} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ \vdots \end{bmatrix} \leftarrow i.$$

$$A_{c} = \begin{bmatrix} -a_{1} & -a_{2} & \dots & -a_{n} \\ 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix}, e_{i}^{T}A_{c} = \begin{cases} [-a_{1} & -a_{2} & \dots & -a_{n}] & i = 1 \\ e_{i-1}^{T} & i \ge 2 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{cases}$$

Proof of Lemma 2 – 2

Computation of the observability matrix $\mathcal{O}_c = \tilde{I}_n b(A_c) \in \mathcal{R}^{n \times n}$ 1st row:

$$e_n^T b(A_c) = e_n^T b_1 A_c^{n-1} + \dots + e_n^T b_{n-1} A_c + e_n^T b_n I_n$$

n-th term:
$$[0 \dots 0 \ b_n]$$

 $(n-1)$ -th term: $b_{n-1}e_n^T A_c = b_{n-1}e_{n-1}^T = [0 \dots b_{n-1} \ 0]$
...
 $e_n^T b(A_c) = [b_1 \dots b_{n-1} \ b_n] = C_c$

2nd row:

$$e_{n-1}^T b(A_c) = e_n^T A_c b(A_c) = e_n^T b(A_c) A_c \implies e_{n-1}^T b(A_c) = C_c A_c$$

and so on ...

Proof of Lemma 2 – 3

- \mathcal{O}_c is nonsingular
 - iff $b(A_c)$ is nonsingular because matrix \tilde{I}_n is always nonsingular
 - $b(A_c)$ is nonsingular iff $det(b(A_c)) \neq 0$ which depends on the eigenvalues of $b(A_c)$ matrix
 - the eigenvalues of the matrix $b(A_c)$ are $b(\lambda_i)$, i = 1, 2, ..., n λ_i is an eigenvalue of A_c , i.e a root of a(s) = det(sI - A)

$$det(b(A_c)) = \prod_{i=1}^{n} b(\lambda_i) \neq 0$$

 $\ (s) \ a(s) \ and \ b(s) \ have no \ common \ roots, i.e. they are relative primes$

Minimal realization conditions – 1

Theorem 1: $H(s) = \frac{b(s)}{a(s)}$ is irreducible iff all *n*-th order realizations are jointly controllable and observable.

Proof: combine Lemma 1. and 2. •

Definition: *minimal realization*

A realization (A, B, C) of dimension n is minimal if one cannot find another realization of dimension less than n.

Theorem 2: $H(s) = \frac{b(s)}{a(s)}$ is irreducible iff any of its realization (A, B, C) is minimal where $H(s) = C(sI - A)^{-1}B$

Proof: by contradiction

Minimal realization conditions – 2

Theorem 3.: A realization (A, B, C) is minimal iff the system is jointly controllable and observable.

Proof: Combine Theorem 1 and Theorem 2. •

Lemma 3.: Any two minimal realizations can be connected by a unique similarity transformation (which is invertible).

Proof: (Just the idea of it)

 $T = \mathcal{O}^{-1}(C_1, A_1)\mathcal{O}(C_2, A_2) = \mathcal{C}(A_1, B_1)\mathcal{C}^{-1}(A_2, B_2)$

exists and it is invertible: this is used as a transformation matrix.

General decomposition theorem – 1

(A, B, C) then we can always transform it to another realization $(\overline{A}, \overline{B}, \overline{C})$ with partitioned state vector and matrices

$$\overline{x} = \begin{bmatrix} \overline{x}_{co} & \overline{x}_{c\overline{o}} & \overline{x}_{\overline{c}o} & \overline{x}_{\overline{c}\overline{o}} \end{bmatrix}^{T}$$
$$\overline{A} = \begin{bmatrix} \overline{A}_{co} & 0 & \overline{A}_{13} & 0 \\ \overline{A}_{21} & \overline{A}_{c\overline{o}} & \overline{A}_{23} & \overline{A}_{24} \\ 0 & 0 & \overline{A}_{\overline{c}o} & 0 \\ 0 & 0 & \overline{A}_{43} & \overline{A}_{\overline{c}\overline{o}} \end{bmatrix} \quad \overline{B} = \begin{bmatrix} \overline{B}_{co} \\ \overline{B}_{c\overline{o}} \\ 0 \\ 0 \end{bmatrix}$$

 $\overline{C} = \begin{bmatrix} \overline{C}_{co} & 0 & \overline{C}_{\overline{c}o} & 0 \end{bmatrix}$

General decomposition theorem – 2

The partitioning defines subsystems

• Controllable and observable subsystem: $(\overline{A}_{co}, \overline{B}_{co}, \overline{C}_{co})$ is minimal, i.e. $\overline{n} \leq n$ and

$$H(s) = \overline{C}_{co}(s\overline{I} - \overline{A}_{co})^{-1}\overline{B}_{co} = C(sI - A)^{-1}B$$

Controllable subsystem

$$\left(\begin{bmatrix} \overline{A}_{co} & 0 \\ \overline{A}_{21} & \overline{A}_{c\overline{o}} \end{bmatrix} , \begin{bmatrix} \overline{B}_{co} \\ \overline{B}_{c\overline{o}} \end{bmatrix} , \begin{bmatrix} \overline{C}_{co} & 0 \end{bmatrix} \right)$$

Observable subsystem

$$\left(\begin{array}{ccc} \left[\begin{array}{cc} \overline{A}_{co} & \overline{A}_{13} \\ 0 & \overline{A}_{\overline{c}o} \end{array}\right] , \left[\begin{array}{ccc} \overline{B}_{co} \\ 0 \end{array}\right] , \left[\begin{array}{ccc} \overline{C}_{co} & \overline{C}_{\overline{c}o} \end{array}\right] \right)$$

Uncontrollable and unobservable subsystem

OUTLOOK: CONTROLLABILITY OF NONLINEAR SYSTEMS Fed-batch bioreactor (fermenter)

Controllability of CT-LTI systems

Applying the "brute-force" Dirac-delta input we get

$$x(0_{+}) = x(0_{-}) + \begin{bmatrix} B & AB & A^{2}B & \dots & A^{n-1}B \end{bmatrix} \begin{bmatrix} g_{1} \\ g_{2} \\ \vdots \\ \vdots \\ \vdots \\ g_{n} \end{bmatrix}$$

If $rank C_{n-1}(A, B) = r$ is not full then we can only move inside a linear sub-space of \mathbb{R}^n of dimension r.

Fed-batch case: state equations

Nonlinear input-affine state-space model

$$\dot{x} = f(x) + g(x)u$$

where

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} X \\ S \\ V \end{bmatrix} , \quad u = F$$

$$f(x) = \begin{bmatrix} \mu(x_2)x_1 \\ -\frac{1}{Y}\mu(x_2)x_1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{\mu_{max}x_2x_1}{k_1+x_2+k_2x_2^2} \\ -\frac{\mu_{max}x_2x_1}{(k_1+x_2+k_2x_2^2)Y} \\ 0 \end{bmatrix} , \quad g(x) = \begin{bmatrix} -\frac{x_1}{x_3} \\ \frac{S_f-x_2}{x_3} \\ 1 \end{bmatrix}$$

and

$$\mu(x_2) = \frac{\mu_{max} x_2}{k_1 + x_2 + k_2 x_2^2}$$

Controllability analysis

 $rank \Delta_c = 2 < dim x = 3$

The reachability hyper-surface of the fed-batch fermenter for initial conditions $x_1(0) = 2\frac{g}{l}$, $x_2(0) = 0.5\frac{g}{l}$, $x_3(0) = 0.5\frac{g}{l}$

Co-ordinate transformation

"Hidden conserved quantity" generating the transformation

$$\lambda(x_1, x_2, x_3) = V(S_f - S) + \frac{1}{Y}V(X_f - X)$$

Transformed "minimal" model ($z_1 = x_1, z_2 = x_2, z_3 = \lambda(x_1, x_2, x_3)$)

$$\dot{z} = \bar{f}(z) + \bar{g}(z)u$$

where

$$\bar{f}(z) = \begin{bmatrix} \frac{\mu_{max} z_2 z_1}{K_1 + z_2 + K_2 z_2^2} \\ -\frac{\mu_{max} z_2 z_1}{(K_1 + z_2 + K_2 z_2^2)Y} \\ 0 \end{bmatrix}, \quad \bar{g}(z) = \begin{bmatrix} -\frac{z_1}{z_3}(-\frac{1}{Y}z_1 - z_2 + S_f) \\ \frac{S_f - z_2}{z_3}(-\frac{1}{Y}z_1 - z_2 + S_f) \\ 0 \end{bmatrix}$$

Structural properties

- depends on the selection of the input
- does not depend on the source function μ