Model building using engineering principles Introduction

Katalin Hangos

University of Pannonia Department of Electrical Engineering and Information Systems

2019.03.22.

All models are wrong some are useful !

George Box

Contents

The notion of a model

- their use and form
- 2 The modelling process
 - the modelling cycle and its steps
- Model types and forms
 - static vs. dynamic
 - distributed vs (lumped or)concentrated parameter
- Ourse contents
 - modelling fundamentals
 - models based on first engineering principles
 - tools and techniques for supporting model building, verification, calibration and validation

What is a model?

 "A model (M) for a system (S) and an experiment (E) is anything to which E can be applied in order to answer questions about S" (Minsky, 1965)

Engineering models

"A mathematical representation (M) of a physical system (S) for a specific purpose (P) and experiment (E)"

Model application areas

- $1 \hspace{0.1in} \text{system} \hspace{0.1in} \text{design}$
 - good accuracy
 - mostly static
- 2 control design
 - dynamic (time-dependent)
 - accurate description of the main dynamic processes

2019.03.22

5 / 10

- 3 monitoring, troubleshooting and diagnosis
 - dynamic (time-dependent)
 - not very accurate but selective
- 4 simulation and operator training
 - great level of details
 - good accuracy
- 5 safety and risk analysis
 - mostly static
 - stochastic

The modelling process

2019.03.22. 6 / 10

Model classification

- a Mechanistic vs. Empirical
 - use first engineering principles
 - conservation of mass, energy, etc.
 - consider physical laws for the mechanisms
- b Stochastic vs. Deterministic
 - application area: control, monitoring, diagnosis
- c Lumped vs. Distributed
 - no state dependency (perfectly stirred volumes, concentrated parameter)
- d Dynamic vs. Steady state
 - application area: control, monitoring, diagnosis
- e Continuous vs. Discrete (time and range space)
- f Linear vs. Nonlinear

Mechanisms

- in- and outflow
- gravitational outflow (driven by the hydrostatic pressure)

Modelling assumptions

- F1 perfectly stirred
- F2 only water
- F3 gravitational outflow
- F4 constant cross section A
- F5 constant density (ρ)

Conservation balances: overall mass balance

$$\frac{dm}{dt} = v_b - v_k \tag{1}$$

Constitutive equations

- $m = A \cdot h \cdot \rho$ (water level h is measurable)
- $v_B = v_B^* k_B$ (binary valve k_B is measurable)
- v_K = K · h · k_K (gravitational outflow, binary valve k_K is measurable)

Model equation with measurable signals:

$$\frac{dh}{dt} = \frac{v_b^*}{A\rho} k_b - \frac{K}{A\rho} h \cdot k_K \tag{2}$$

State space model form

- state variable: *h* level
- input variables: binary values k_B and k_K
- output variables: h level